Introduction to Machine Learning

Multiclass Classification Softmax Regression

Learning goals

- Know softmax regression
- Understand that softmax regression is a generalization of logistic regression

FROM LOGISTIC REGRESSION ...

Remember **logistic regression** ($\mathcal{Y} = \{0, 1\}$): We combined the hypothesis space of linear functions, transformed by the logistic function $s(z) = \frac{1}{1 + \exp(-z)}$, i.e.

$$\mathcal{H} = \left\{ \pi : \mathcal{X}
ightarrow \mathbb{R} \mid \pi(\mathbf{x}) = \boldsymbol{s}(\boldsymbol{\theta}^{\top}\mathbf{x})
ight\} \,,$$

× × 0 × × ×

with the Bernoulli (logarithmic) loss:

$$L(y, \pi(\mathbf{x})) = -y \log \left(\pi(\mathbf{x})\right) - (1-y) \log \left(1 - \pi(\mathbf{x})\right).$$

Remark: We suppress the intercept term for better readability. The intercept term can be easily included via $\theta^{\top} \tilde{\mathbf{x}}, \theta \in \mathbb{R}^{p+1}, \tilde{\mathbf{x}} = (1, \mathbf{x}).$

... TO SOFTMAX REGRESSION

There is a straightforward generalization to the multiclass case:

• Instead of a single linear discriminant function we have *g* linear discriminant functions

$$f_k(\mathbf{x}) = \boldsymbol{\theta}_k^{\top} \mathbf{x}, \quad k = 1, 2, ..., g,$$

each indicating the confidence in class k.

• The *g* score functions are transformed into *g* probability functions by the **softmax** function $s : \mathbb{R}^g \to [0, 1]^g$

$$\pi_k(\mathbf{x}) = s(f(\mathbf{x}))_k = \frac{\exp(\boldsymbol{\theta}_k^\top \mathbf{x})}{\sum_{j=1}^g \exp(\boldsymbol{\theta}_j^\top \mathbf{x})},$$

instead of the **logistic** function for g = 2. The probabilities are well-defined: $\sum \pi_k(\mathbf{x}) = 1$ and $\pi_k(\mathbf{x}) \in [0, 1]$ for all k.

× × 0 × × ×

... TO SOFTMAX REGRESSION / 2

- The softmax function is a generalization of the logistic function. For g = 2, the logistic function and the softmax function are equivalent.
- Instead of the Bernoulli loss, we use the multiclass logarithmic loss

$$L(y,\pi(\mathbf{x})) = -\sum_{k=1}^{g} \mathbb{1}_{\{y=k\}} \log \left(\pi_k(\mathbf{x})\right).$$

- Note that the softmax function is a "smooth" approximation of the arg max operation, so s((1, 1000, 2)^T) ≈ (0, 1, 0)^T (picks out 2nd element!).
- Furthermore, it is invariant to constant offsets in the input:

$$s(f(\mathbf{x})+\mathbf{c}) = \frac{\exp(\boldsymbol{\theta}_k^{\top}\mathbf{x}+c)}{\sum_{j=1}^g \exp(\boldsymbol{\theta}_j^{\top}\mathbf{x}+c)} = \frac{\exp(\boldsymbol{\theta}_k^{\top}\mathbf{x})\cdot\exp(c)}{\sum_{j=1}^g \exp(\boldsymbol{\theta}_j^{\top}\mathbf{x})\cdot\exp(c)} = s(f(\mathbf{x}))$$

	Logistic Regression	Softmax Regression
y	{0,1}	{1,2,, <i>g</i> }
Discriminant fun.	$f(\mathbf{x}) = \boldsymbol{ heta}^{ op} \mathbf{x}$	$f_k(\mathbf{x}) = \boldsymbol{\theta}_k^{\top} \mathbf{x}, k = 1, 2,, g$
Probabilities	$\pi(\mathbf{x}) = rac{1}{1 + \exp(-\mathbf{\theta}^{ op} \mathbf{x})}$	$\pi_k(\mathbf{x}) = \frac{\exp(\boldsymbol{\theta}_k^\top \mathbf{x})}{\sum_{j=1}^g \exp(\boldsymbol{\theta}_j^\top \mathbf{x})}$
$L(y, \pi(\mathbf{x}))$	Bernoulli / logarithmic loss $-y \log \left(\pi(\mathbf{x}) ight) - (1-y) \log \left(1 - \pi(\mathbf{x}) ight)$	Multiclass logarithmic loss $-\sum_{k=1}^{g} [y=k] \log (\pi_k(\mathbf{x}))$

We can schematically depict softmax regression as follows:

We can schematically depict softmax regression as follows:

Further comments:

- We can now, for instance, calculate gradients and optimize this with standard numerical optimization software.
- Softmax regression has an unusual property in that it has a "redundant" set of parameters. If we subtract a fixed vector from all θ_k , the predictions do not change at all. Hence, our model is "over-parameterized". For any hypothesis we might fit, there are multiple parameter vectors that give rise to exactly the same hypothesis function. This also implies that the minimizer of $\mathcal{R}_{emp}(\theta)$ above is not unique! Hence, a numerical trick is to set $\theta_g = 0$ and only optimize the other θ_k . This does not restrict our hypothesis space, but the constrained problem is now convex, i.e., there exists exactly one parameter vector for every hypothesis.
- A similar approach is used in many ML models: multiclass LDA, naive Bayes, neural networks and boosting.

× × 0 × × ×

SOFTMAX: LINEAR DISCRIMINANT FUNCTIONS

Softmax regression gives us a linear classifier.

- The softmax function $s(z)_k = \frac{\exp(z_k)}{\sum_{j=1}^g \exp(z_j)}$ is
 - a rank-preserving function, i.e. the ranks among the elements of the vector *z* are the same as among the elements of *s*(*z*). This is because softmax transforms all scores by taking the exp(·) (rank-preserving) and divides each element by the same normalizing constant.

Thus, the softmax function has a unique inverse function $s^{-1} : \mathbb{R}^g \to \mathbb{R}^g$ that is also monotonic and rank-preserving. Applying s_k^{-1} to $\pi_k(\mathbf{x}) = \frac{\exp(\theta_k^\top \mathbf{x})}{\sum_{j=1}^g \exp(\theta_j^\top \mathbf{x})}$ gives us $f_k(\mathbf{x}) = \theta_k^\top \mathbf{x}$. Thus, softmax regression is a linear classifier.

GENERALIZING SOFTMAX REGRESSION

Instead of simple linear discriminant functions we could use **any** model that outputs *g* scores

$$f_k(\mathbf{x}) \in \mathbb{R}, k = 1, 2, ..., g$$

We can choose a multiclass loss and optimize the score functions $f_k, k \in \{1, ..., g\}$ by multivariate minimization. The scores can be transformed to probabilities by the **softmax** function.

GENERALIZING SOFTMAX REGRESSION / 2

For example for a **neural network** (note that softmax regression is also a neural network with no hidden layers):

× × ×

Remark: For more details about neural networks please refer to the lecture **Deep Learning**.