Introduction to Machine Learning

Multiclass Classification
Softmax Regression

Learning goals
@ Know softmax regression

@ Understand that softmax regression
is a generalization of logistic
regression
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FROM LOGISTIC REGRESSION ...

Remember logistic regression () = {0, 1}): We combined the

hypothesis space of linear functions, transformed by the logistic
. _ 1 .

function s(z) = Trem(—2) -6

H= {w:X—>IR|7r(x):s(0Tx)} ,

with the Bernoulli (logarithmic) loss:

Ly, m(x)) = =y log (m(x)) — (1 — y) log (1 — m(x)).

Remark: We suppress the intercept term for better readability. The intercept term can

be easily included via 8 "%, 8 € R, % = (1, x).
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... TO SOFTMAX REGRESSION

There is a straightforward generalization to the multiclass case:

@ Instead of a single linear discriminant function we have g linear
discriminant functions

fk(x):92x7 k:1727"'7g7

each indicating the confidence in class k.

@ The g score functions are transformed into g probability functions
by the softmax function s : RY — [0, 1]9

exp(6, x)

Tk(x) = s(f(x))x = :
?:1 eXp(eij)

instead of the logistic function for g = 2. The probabilities are

well-defined: Y mx(x) = 1 and 7, (x) € [0, 1] for all k.
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... TO SOFTMAX REGRESSION /2

@ The softmax function is a generalization of the logistic function.
For g = 2, the logistic function and the softmax function are
equivalent.

@ Instead of the Bernoulli loss, we use the multiclass logarithmic
loss

g
Ly, m(x)) = = > L1y log (mk(x)) -
k=1
@ Note that the softmax function is a “smooth” approximation of the

arg max operation, so s((1,1000,2)7) ~ (0,1,0)" (picks out 2nd
element!).

@ Furthermore, it is invariant to constant offsets in the input:
s(f(x)+c) = exp(@,x+c)  exp(6]x)-exp(c)
S0 exp(6x+0) 7 exp(6]x) - exp(c)

= s(f(x))
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LOGISTIC VS. SOFTMAX REGRESSION

Logistic Regression

Softmax Regression

y {0, 1}
Discriminant fun. f(x) =0Tx
Probabilities

(%) = ey

L(y,m(x)) Bernoulli / logarithmic loss
—ylog (m(x)) = (1 = y)log (1 — 7(x))

{1,2,...,9}

fi(x) =0/ x,k=1,2,...,g

e><p(9,:r X)

7Tk(x) = 42;7:1 exp(el'-rx)

Multiclass logarithmic loss
= Xiily = Kl log (mk(x))
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LOGISTIC VS. SOFTMAX REGRESSION
We can schematically depict softmax regression as follows: O O X
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LOGISTIC VS. SOFTMAX REGRESSION
We can schematically depict softmax regression as follows: O O X
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LOGISTIC VS. SOFTMAX REGRESSION

Further comments:

@ We can now, for instance, calculate gradients and optimize this
with standard numerical optimization software.

@ Softmax regression has an unusual property in that it has a
“redundant” set of parameters. If we subtract a fixed vector from all
6y, the predictions do not change at all. Hence, our model is
“over-parameterized”. For any hypothesis we might fit, there are
multiple parameter vectors that give rise to exactly the same
hypothesis function. This also implies that the minimizer of
Remp (@) above is not unique! Hence, a numerical trick is to set
0, = 0 and only optimize the other 8. This does not restrict our
hypothesis space, but the constrained problem is now convex, i.e.,
there exists exactly one parameter vector for every hypothesis.

@ A similar approach is used in many ML models: multiclass LDA,
naive Bayes, neural networks and boosting.
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SOFTMAX: LINEAR DISCRIMINANT FUNCTIONS

Softmax regression gives us a linear classifier.
K= exp(Zx)
o7 exp(z))

e a rank-preserving function, i.e. the ranks among the elements
of the vector z are the same as among the elements of s(z).
This is because softmax transforms all scores by taking the
exp(+) (rank-preserving) and divides each element by the
same normalizing constant.

Thus, the softmax function has a unique inverse function

s~ : RY — RY that is also monotonic and rank-preserving.
. 1 - exp(8,] x) . T
Applying s, ' to mx(x) = W gives us fi(x) = 0, x.

Thus, softmax regression is a linear classifier.

@ The softmax function s(z)
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GENERALIZING SOFTMAX REGRESSION

Instead of simple linear discriminant functions we could use any model
that outputs g scores

fik(x) e R, k=1,2,...,9

We can choose a multiclass loss and optimize the score functions
fe, k € {1,..., g} by multivariate minimization. The scores can be
transformed to probabilities by the softmax function.
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GENERALIZING SOFTMAX REGRESSION /2

For example for a neural network (note that softmax regression is also O O X
a neural network with no hidden layers):

X X

Remark: For more details about neural networks please refer to the
lecture Deep Learning.
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