
Introduction to Machine Learning

Multiclass Classification
Multiclass Classification and Losses

Learning goals
Know what multiclass means and
which types of classifiers exist

Know the MC 0-1-loss

Know the MC brier score

Know the MC logarithmic loss



MULTICLASS CLASSIFICATION

Scenario: Multiclass classification with g > 2 classes

D ⊂ (X × Y)n ,Y = {1, ..., g}

Example: Iris dataset with g = 3
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REVISION: RISK FOR CLASSIFICATION

Goal: Find a model f : X → Rg , where g is the number of classes, that
minimizes the expected loss over random variables (x, y) ∼ Pxy

R(f ) = Exy [L (y , f (x))] = Ex

[∑
k∈Y

L(k , f (x))P(y = k |x = x)

]

The optimal model for a loss function L (y , f (x)) is

f̂ (x) = argmin
f∈H

∑
k∈Y

L(k , f (x))P(y = k |x = x) .

Because we usually do not know Pxy , we minimize the empirical risk
as an approximation to the theoretical risk

f̂ = argmin
f∈H

Remp(f ) = argmin
f∈H

n∑
i=1

L
(

y (i), f
(

x(i)
))

.
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TYPES OF CLASSIFIERS

We already saw losses for binary classification tasks. Now we will
consider losses for multiclass classification tasks.

For multiclass classification, loss functions will be defined on

vectors of scores

f (x) = (f1(x), ..., fg(x))

vectors of probabilities

π(x) = (π1(x), ..., πg(x))

hard labels
h(x) = k , k ∈ {1, 2, ..., g}

© Introduction to Machine Learning – 3 / 12



ONE-HOT ENCODING

Multiclass outcomes y with classes 1, . . . , g are often transformed
to g binary (1/0) outcomes using

with 1{y=k} =

{
1 if y = k

0 otherwise

One-hot encoding does not lose any information contained in the
outcome.

Example: Iris
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0-1-Loss
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0-1-LOSS

We have already seen that optimizer ĥ(x) of the theoretical risk using
the 0-1-loss

L(y , h(x)) = 1{y ̸=h(x)}

is the Bayes optimal classifier, with

ĥ(x) = argmax
l∈Y

P(y = l | x = x)

and the optimal constant model (featureless predictor)

h(x) = k , k ∈ {1, 2, ..., g}

is the classifier that predicts the most frequent class k ∈ {1, 2, ..., g} in
the data

h(x) = mode
{

y (i)
}
.
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MC Brier Score
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MC BRIER SCORE

The (binary) Brier score generalizes to the multiclass Brier score that is
defined on a vector of class probabilities (π1(x), ..., πg(x))

L(y , π(x)) =
g∑

k=1

(
1{y=k} − πk(x)

)2
.

Optimal constant prob vector π(x) = (θ1, ..., θg):

θ = argmin
θ∈Rg ,

∑
θk=1

Remp(θ) with Remp(θ) =

(
n∑

i=1

g∑
k=1

(
1{y(i)=k} − θk

)2
)

We solve this by setting the derivative w.r.t. θk to 0

∂Remp(θ)

∂θk
= −2 ·

n∑
i=1

(1{y(i)=k} − θk) = 0 ⇒ π̂k(x) = θ̂k =
1
n

n∑
i=1

1{y(i)=k},

being the fraction of class-k observations.

NB: We naively ignored the constraints! But since
g∑

k=1
θ̂k = 1 holds for the minimizer of

the unconstrained problem, we are fine. Could have also used Lagrange multipliers!
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MC BRIER SCORE / 2

Claim: For g = 2 the MC Brier score is exactly twice as high as the binary Brier score,
defined as (π1(x)− y)2.

Proof:

L(y , π(x)) =
1∑

k=0

(
1{y=k} − πk(x)

)2

For y = 0:

L(y , π(x)) = (1 − π0(x))
2 + (0 − π1(x))

2 = (1 − (1 − π1(x)))
2 + π1(x)

2

= π1(x)
2 + π1(x)

2 = 2 · π1(x)
2

For y = 1:

L(y , π(x)) = (0 − π0(x))
2 + (1 − π1(x))

2 = (−(1 − π1(x)))
2 + (1 − π1(x))

2

= 1 − 2 · π1(x) + π1(x)
2 + 1 − 2 · π1(x) + π1(x)

2

= 2 · (1 − 2 · π1(x) + π1(x)
2) = 2 · (1 − π1(x))

2 = 2 · (π1(x)− 1)2

L(y , π(x)) =

{
2 · π1(x)2 for y = 0

2 · (π1(x)− 1)2 for y = 1
= 2 · (π1(x)− y)2
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Logarithmic Loss
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LOGARITHMIC LOSS (LOG-LOSS)

The generalization of the Binomial loss (logarithmic loss) for two
classes is the multiclass logarithmic loss / cross-entropy loss:

L(y , π(x)) = −
g∑

k=1

1{y=k} log (πk(x)) ,

with πk(x) denoting the predicted probability for class k .

Optimal constant prob vector π(x) = (θ1, ..., θg):

πk(x) = θk =
1
n

n∑
i=1

1{y(i)=k},

being the fraction of class-k observations.

Proof: Exercise.

In the upcoming section we will see how this corresponds to the
(multinomial) softmax regression.
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LOGARITHMIC LOSS (LOG-LOSS) / 2

Claim: For g = 2 the log-loss is equal to the Bernoulli loss, defined as

L0,1(y , π1(x)) = −ylog(π1(x))− (1 − y)log(1 − π1(x))

Proof:

L0,1(y , π1(x)) = −ylog(π1(x))− (1 − y)log(1 − π1(x))

= −ylog(π1(x))− (1 − y)log(π0(x))

= −1{y=1}log(π1(x))− 1{y=0}log(π0(x))

= −
1∑

k=0

1{y=k} log (πk(x)) = L(y , π(x))
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