Introduction to Machine Learning

Multiclass Classification
Multiclass Classification and Losses

Learning goals

@ Know what multiclass means and
which types of classifiers exist

@ Know the MC 0-1-loss
@ Know the MC brier score

Petal Widh

@ Know the MC logarithmic loss
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MULTICLASS CLASSIFICATION

Scenario: Multiclass classification with g > 2 classes

Dc(Xxx)Y)",y={1,..,9}

Example: Iris dataset with g = 3
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REVISION: RISK FOR CLASSIFICATION

Goal: Find a model f : & — RRY, where g is the number of classes, that X
minimizes the expected loss over random variables (X, y) ~ Py,

R(f) = By [L (v, F(X))] = By | S L(K, (X)) P(y = klx = X) X X

key
The optimal model for a loss function L (y, f(x)) is
—argmlnz (k, f(x = k|x =x).
fen  rey

Because we usually do not know P,,, we minimize the empirical risk
as an approximation to the theoretical risk

f = arg min Remp(f) _argmlnz ( 0 f<x(l>)

feM fen ‘5

Introduction to Machine Learning — 2/12



TYPES OF CLASSIFIERS

@ We already saw losses for binary classification tasks. Now we will
consider losses for multiclass classification tasks.

@ For multiclass classification, loss functions will be defined on
e vectors of scores

f(x) = (f(x), ..., fy(x))

e vectors of probabilities

m(x) = (m1(x), .., 7g(X))

e hard labels
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ONE-HOT ENCODING

@ Multiclass outcomes y with classes 1, ...

to g binary (1/0) outcomes using

with ]l{y:k} =

, g are often transformed

1 ify=k

0 otherwise

@ One-hot encoding does not lose any information contained in the

outcome.

Example: Iris
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0-1-Loss
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0-1-LOSS
We have already seen that optimizer h(x) of the theoretical risk using
the 0-1-loss
L(y, h(x)) = Ly 2nx)y
is the Bayes optimal classifier, with

h(x) = argmaxP(y = I | x = x)
ley

and the optimal constant model (featureless predictor)
h(x) =k, k€ {1,2,...,9}

is the classifier that predicts the most frequent class k € {1,2,...,g} in
the data

h(x) = mode {y(i)} .
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MC Brier Score
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MC BRIER SCORE

The (binary) Brier score generalizes to the multiclass Brier score that is
defined on a vector of class probabilities (71 (x), ..., mg(x))

(Lymry — ”k(x))z :

M

L(y,m(x)) =

>
Il

1

Optimal constant prob vector 7(x) = (61, ..., 64):

n g9
0 = argmin Remp(0) with Remp(6 (ZZ( o )2>
i=1 k=1

OERI, Y O=1

We solve this by setting the derivative w.r.t. 64 to 0

ORemp(
5792__2 Z o=k — k) = 0 = Tu(x Z]l{y e

being the fraction of class-k observations.

g .
NB: We naively ignored the constraints! But since Y 6x = 1 holds for the minimizer of

k=1
the unconstrained problem, we are fine. Could have also used Lagrange multipliers!
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MC BRIER SCORE /2

Claim: For g = 2 the MC Brier score is exactly twice as high as the binary Brier score,

defined as (1 (x) — y)2.

Proof: ;
Ly, m(x) = > (Liymsy — me(%))°
Fory = 0: -
Ly,m(x)) = (1 =mo(x))* +(0—m(x)* = (1 = (1 = m(x)))* + m (x)°
= mX)P+m(x)? =2 m(x)?
Fory = 1:
Ly,m(x) = (0=mo(x))* + (1= m(x))* = (=(1 = m(x)))* + (1 = m(x))°

1—2‘7T1(X)+7T1(X)2+1 —2‘7T1(X)+7T1(X)2
= 2. (1-2-mX)+mx))=2-(1 —mx)> =2 (m(x) — 1)

Ja-m(x)? fory=0 Y
L(y,rr(x)){z‘ A SO R
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Logarithmic Loss
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LOGARITHMIC LOSS (LOG-LOSS)

The generalization of the Binomial loss (logarithmic loss) for two

classes is the multiclass Iogarithmic loss / cross-entropy loss:

L(y,m( Zﬂ{y k3 log (mk(x)) ,

with 7, (x) denoting the predicted probability for class k.
Optimal constant prob vector 7(x) = (01, ..., fy):

m(X) = Ok = Z]l{y” >
being the fraction of class-k observations.
Proof: Exercise.

In the upcoming section we will see how this corresponds to the
(multinomial) softmax regression.
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LOGARITHMIC LOSS (LOG-LOSS) /2
Claim: For g = 2 the log-loss is equal to the Bernoulli loss, defined as
Lo,1(y,m1(x)) = —ylog(m1(x)) — (1 = y)log(1 — m1(x))
Proof:
Loa(y,m(x)) = —ylog(mi(x)) — (1 = y)log(1 — m1(x))
= —ylog(m(x)) — (1 = y)log(mo(x))

= —lg_yylog(mi(x)) — L{,_o}log(mo(x))

= =" ek log (7)) = L, 7(x)

k=0
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