
Introduction to Machine Learning

Multiclass Classification
Designing Codebooks and ECOC

Learning goals
Know what a codebook is

Understand that codebooks
generalize one-vs-one and
one-vs-rest

Know how to define a good codebook
and error-correcting output codes
(ECOC)

Know how randomized hill-climbing
algorithm is used to find good
codebooks

Designing Codebooks

© Introduction to Machine Learning – 1 / 12

CODEBOOKS

We have already seen that we can write down principles like
one-vs-rest and one-vs-one reduction compactly by so-called
codebooks.

During training, a scoring classifier is trained for each column.

The k-th row is called codeword for class k .

Knowing the principle of codebooks, we can define
multiclass-to-binary reductions quite flexibly.

We can now ask ourselves, how to create optimal codebooks.

Class f1(x) f2(x) f3(x)
1 1 -1 -1
2 -1 1 -1
3 - 1 -1 1

Class f1(x) f2(x) f3(x)
1 1 -1 0
2 -1 0 1
3 0 1 -1

Left: one-vs-rest codebook. Right: one-vs-one codebook.

© Introduction to Machine Learning – 2 / 12

CODEBOOKS: DECIDING LABELS

For a general codebook, once we trained the classifiers, how to predict
the class ŷ for a new input x?

When a new sample x is going to be classified, all classifiers fk are
applied to x, scores are potentially transformed and turned into
binary labels by sgn (fk(x)).

Class f1(x) f2(x) f3(x)
1 1 1 0
2 -1 1 1
3 0 -1 -1

sgn(̂f (x)) -1 1 - 1

We obtain a code for the observation x for which we can calculate
the distance to the codewords of the other classes. This can be
done by Hamming distance (counting the number of bits that
differ) or by L1-distance.

© Introduction to Machine Learning – 3 / 12

CODEBOOKS: DECIDING LABELS / 2

For example, the L1-distance between sgn
(

f̂ (x)
)
= (−1, 1,−1)

and the class 1 codeword (1, 1, 0) is 3.

We can do so for all the classes to obtain respective distances:
Classes Dist
1 3
2 2
3 3

The distance for class 2 is minimal, therefore we predict class 2 for
the input x.

© Introduction to Machine Learning – 4 / 12

DEFINING GOOD CODEBOOKS

Question: How to define a good codebook?

Assume we are given a test observation (x, y) with y = 2.

Assume classifier f2(x) produces a false prediction:
Class f1(x) f2(x) f3(x) Dist

1 1 -1 0 3
2 -1 1 1 2
3 0 -1 -1 3

|̂f(x)| -1 -1 1

Even though f2(x) is wrong, the overall prediction will be correct in
the above case, if we pick the best codeword w.r.t. distance from
the predicted codeword.

We effectively corrected for the error.

This motivates a desirable characteristic of a codebook: we want
to have codes that can correct for as many errors as possible.

Which is called error-correcting output codes (ECOC).

© Introduction to Machine Learning – 5 / 12

Error-Correcting Codes (ECOC)

© Introduction to Machine Learning – 6 / 12

ERROR-CORRECTING CODES (ECOC)

The power of a code to correct errors is related to the row separation:

Each codeword should be well-separated in Hamming distance
from each of the other codewords.

Otherwise, if the class codewords are very similar, a prediction
error in a single binary classifier easily results in an “overall” error.

If the minimum distance between any pair of codewords is d , the
code can correct at least

⌊
d−1

2

⌋
single bit errors.

© Introduction to Machine Learning – 7 / 12

ERROR-CORRECTING CODES (ECOC) / 2

Another desirable property is column separation:

Columns should be uncorrelated.

If two columns k and l are similar or identical, a learning algorithm
will make similar (correlated) mistakes in learning fk and fl .

Error-correcting codes only succeed if the errors made in the
individual classifiers are relatively uncorrelated, so that the number
of simultaneous errors in many classifiers is small.

Errors in classifiers fk and fl will also be highly correlated if the bits
in those columns are complementary.

Try to ensure that columns are neither identical nor
complementary.

→ We want to maximize distances between rows, and want the
distances between columns to not be too small (identical
columns) or too high (complementary columns).

© Introduction to Machine Learning – 8 / 12

ERROR-CORRECTING CODES (ECOC) / 3

Remark:

In general, if there are k classes, there will be at most 2k−1 − 1
usable binary columns.
For example for k = 3, there are only 23 = 8 possible columns. Of
these, half are complements of the other half. The columns that
only contain 1s or the one that only contains −1s are also not
usable.

Class f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x)
1 -1 -1 -1 -1 1 1 1 1
2 -1 - 1 1 1 -1 -1 1 1
3 -1 1 -1 1 -1 1 -1 1

© Introduction to Machine Learning – 9 / 12

ERROR-CORRECTING CODES (ECOC) / 4

Assume we have the budget to train L binary classifiers and now want to
find an error-correcting code with maximal row and column separation.

For only few classes g ≤ 11, exhaustive search can be performed
and a codebook that has good row and column separation is
chosen.

However, for many classes g > 11, it becomes more and more
challenging to find the optimal codebook with codewords of
length L.

Dietterich et al. employed a randomized hill-climbing algorithm for
this task.

© Introduction to Machine Learning – 10 / 12

ECOC: RANDOMIZED HILL-CLIMBING
ALGORITHM

g codewords of length L are randomly drawn.
Any pair of such random strings will be separated by a Hamming
distance that is binomially distributed with mean L

2 .
The algorithm now iteratively improves the code: The algorithm
repeatedly finds the pair of rows closest together (in Hamming
distance or any other distance) and the pair of columns that have
the “most extreme” distance (i.e. too close, or too far apart).

© Introduction to Machine Learning – 11 / 12

ECOC: RANDOMIZED HILL-CLIMBING
ALGORITHM

The algorithm then computes the four codeword bits where these
rows and columns intersect and changes them to improve the row
and column separations

When the procedure reaches a local maximum, the algorithm
randomly chooses pairs of rows and columns and tries to improve
their separation.

© Introduction to Machine Learning – 12 / 12

	Designing Codebooks
	Error-Correcting Codes (ECOC)

