
Supervised Learning

Refreshing Mathematical Tools

Learning goals
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theory



PROBABILITY SPACE

Probability space. A probability space is a triple (Ω,F ,P) which is
modeling a specific random experiment/process. The components are

a sample space Ω, which is the set of all possible outcomes of the
random process modeled by the probability space.

a σ-algebra F , which is a family of sets representing the allowable
events of the random process modeled by the probability space. In
particular, each set in F is a subset of the sample space Ω.

a probability measure P, which assigns each allowable event a
probability value, i.e., P : F → [0, 1]. It satisfies the following
axioms of probability:

Completeness — P(Ω) = 1,
σ-additivity — For any finite or countably infinite sequence of
mutually disjoint events E1,E2, . . . , it holds that

P(∪i≥1Ei) =
∑

i≥1
P(Ei).
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PROBABILITY SPACE / 2

Examples:

Coin Tossing — Possible outcomes are Ω = {H, T} with H resp. T
representing ”heads” resp. ”tails”. The allowable events are
contained in F = {∅, {H}, {T}, {H, T}}. If the coin is fair, then
P(H) = P(T) = 1/2.

Dice Rolling— Possible outcomes are Ω = {1, 2, 3, 4, 5, 6}. The
allowable events are contained in 2Ω, i.e., the power set of Ω. If the
dice is fair, then P(i) = 1/6 for i = 1, . . . , 6.

Further properties. For any probability space (Ω,F ,P) the following
properties hold

Monotonicity — A,B ∈ F , and A ⊂ B, then P(A) ≤ P(B).
Union bound — For any finite or countably infinite sequence
events E1,E2, . . . ,

P(∪i≥1Ei) ≤
∑

i≥1
P(Ei).
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RUNNING EXERCISE

An urn contains five blue, three green, and one red ball. Two balls are
randomly selected (without replacement).

What is the sample space of this experiment?

What is the probability of each point in the sample space?
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INDEPENDENCE

Independence of events:

Two events A,B ∈ F are independent iff P(A ∩ B) = P(A)P(B).

Events E1, . . . ,En ∈ F are called pairwise independent iff any pair
Ei ,Ej with i ̸= j is independent.

Events E1, . . . ,En ∈ F are called mutually independent iff for any
subset I ⊂ {1, . . . , n} it holds that P(

⋂
i∈I Ei) =

∏
i∈I P(Ei).

Note that pairwise independence does not imply mutual independence!

Example: One urn with four balls with the labels 110, 101, 011, 000. We
select one ball randomly.

For i = 1, 2, 3 let
Ei := {Selected ball has zero at the i-th position}.
P(Ei) = 1/2, i = 1, 2, 3 and
P(E1 ∩ E2) = P(E1 ∩ E3) = P(E2 ∩ E3) = 1/4.

But P(E1 ∩ E2 ∩ E3) = 1/4 ̸= 1/8 = P(E1)P(E2)P(E3).
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INDEPENDENCE / 2

Conditional probability. The conditional probability that event A ∈ F
occurs given that event B ∈ F occurs is P(A|B) = P(A∩B)

P(B) . The
conditional probability is well-defined only if P(B) > 0.
Bayes rule. For two events A,B ∈ F it holds that

P(A|B) = P(B|A)P(A)
P(B)

.

The law of total probability. Let E1, . . . ,En ∈ F be mutually disjoint
events, such that ∪n

i=1Ei = Ω, then ∀A ∈ F ,

P(A) =
n∑

i=1

P(A ∩ Ei) =
n∑

i=1

P(A|Ei)P(Ei).
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RUNNING EXERCISE

An urn contains five blue, three green, and one red ball. Two balls are
randomly selected (without replacement).

Consider the event A = {First ball is red} and the event
B = {Second ball is red}. Are these events independent?

Are the events independent if we put a ball back into the urn after each
selection?
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RANDOM VARIABLES

Random variables. A random variable X on a sample space Ω is a
real-valued function on Ω, that is X : Ω → R. The following
observations can be made:

A random variable defines a probability space (ΩX ,FX ,PX ) with
ΩX = Im(X) and PX (A) = P({ω ∈ Ω |X(ω) ∈ A}) for any
A ⊂ ΩX . Usually, one writes just P(X ∈ A) to denote the latter
term, which is the probability distribution of X .
(Technical remark: FX is usually the Borel-σ-algebra on R.)

In practical applications oftentimes the original probability space
(Ω,F ,P) is not the interesting object, but rather the induced
probability space by X . One is rather interested in the probability of
the outcome of the random variable:

Coin tossing — Let X be the random variable counting the
number of tails after 100 flips.
Financial market — Let Xt be the price of some asset in a
future time t.
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RANDOM VARIABLES / 2

Functions of random variables are again random variables, i.e., if
f : R→ R is some (measurable) function, then Z = f (X) is also a
random variable.

Identically distributed — Two random variables X and Y are
identically distributed if their probability distributions coincide, i.e.,
PX = PY .

One distinguishes between two types of random variables:

A discrete random variable is a random variable that can take only
a finite or countably infinite number of values. Its probability
distribution is determined by the probability mass function which
assigns a probability to each value in the image of X .

A continuous random variable is a random variable which can take
uncountably infinite number of values. Usually its probability
distribution is determined by a density function, which assigns
probabilities to intervals of the image of X .
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DISCRETE RANDOM VARIABLES

If the image ΩX of X is discrete (e.g., finite or countably infinite), then X
is called a discrete RV.

For a discrete RV X , the function

p : ΩX → [0, 1], x 7→ P (X ∈ {x}) = P (X = x)

is called a probability function or probability mass function of X .

Obviously, p(x) ≥ 0 and
∑

x∈ΩX
p(x) = 1.

Examples:

Bernoulli distribution: For a binary RV with ΩX = {0, 1},
X ∼ Ber(θ) if p(1) = θ and p(0) = 1 − θ.
Binomial distribution: X ∼ Bin(n, θ) if

p(k) =
{ (n

k

)
θk(1 − θ)n−k if k ∈ {0, . . . , n}

0 otherwise
.
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CONTINUOUS RANDOM VARIABLES

X is a continuous RV if ΩX is non-discrete and there exists a function
p : R→ R such that

p(x) ≥ 0 for all x ∈ R∫∞
−∞ p(x) dx = 1,

for all a ≤ b it holds that P(a ≤ X ≤ b) =
∫ b

a p(x) dx .
The function p is called the probability density function (PDF) of X .

Examples.
Uniform distribution: X ∼ U(a, b) if

p(x) =
{

1/(b − a) if a ≤ x ≤ b
0 otherwise

.

Normal/Gaussian distribution: X ∼ N (µ, σ) if

p(x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
.
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CUMULATIVE DISTRIBUTION FUNCTION

The cumulative distribution function (CDF) of a random variable X is the
function

FX : R → [0, 1], x 7→ P(X ≤ x) .

A CDF fully characterizes a RV: If FX (x) = FY (x) for all x ∈ R, then X
and Y are identically distributed.

If X is

discrete with probability mass function p, then for all x ∈ R,
FX (x) =

∑
y∈ΩX∩(−∞,x] p(y) .

continuous with probability density function p, then
FX (x) =

∫ x
−∞ p(t) dt for all x ∈ R, and p(x) = F ′

X (x) whenever
FX is differentiable at x .
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RUNNING EXERCISE

An urn contains five blue, three green, and one red ball. Two balls are
randomly selected (without replacement).

Let X be the number of green balls selected. What are the possible
values of X?

What is the cumulative distribution function of X?
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EXPECTED VALUE/EXPECTATION

Expectation is the most basic characteristic of a random variable. Let X
be a random variable, then the expectation of X , denoted by E(X), is

E(X) =

∫
x dF(x) =

{ ∑
x∈ΩX

x p(x) if X is discrete∫
ΩX

x p(x) dx if X is continuous

provided the sum resp. the integral is well-defined and exists.
Some important properties of the expected value are:

Linearity — For any constants c1, c2 ∈ R and any pair of random
variables X and Y it holds that
E(c1X + c2Y ) = c1E(X) + c2E(Y ).

Transformations — If f : R→ R is a (measurable) function, then
the expectation of f (X) is

E(f (X)) =

∫
f (x) dF(x) =

{ ∑
x∈ΩX

f (x) p(x) if X is discrete∫
ΩX

f (x) p(x) dx if X is continuous

(provided the sum resp. integral exists.)
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RUNNING EXERCISE

An urn contains five blue, three green, and one red ball. Two balls are
randomly selected (without replacement).

Let X be the number of green balls selected. What is the expected
value of X?
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VARIANCE AND COVARIANCE

The variance of a RV X is defined as follows:

Var(X) = E
[
(X − E(X))2] = ∫

ΩX

(x − E(X))2 dF(x) ,

provided the integral on the right-hand side exists.

The standard deviation is defined by
√

Var(X).

The covariance between RVs X and Y is

Cov(X ,Y ) = E [(X − E[X ])(Y − E[Y ])]
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MULTIVARIATE RANDOM VARIABLES

RVs X1, . . . ,Xn over the same probability space can be combined into
a random vector X = (X1, . . . ,Xn).

Their joint distribution is specified by the joint mass/density function pX ,
such that for any measurable set A it holds that

P(X ∈ A) =
{ ∑

(x1,...,xn)∈A pX (x1, . . . , xn) if X1, . . . ,Xn are discrete∫
A pX (x1, . . . , xn) dx1 . . . dxn if X1, . . . ,Xn are continuous

The marginal distribution p1 of X1 is given by

p1(x1) =

{ ∑
(x2,...,xn)∈ΩX2×...×ΩXn

pX (x1, . . . , xn) if discrete∫
ΩX2×...×ΩXn

pX (x1, . . . , xn) dx2 . . . dxn if continuous

In the same way, the marginal distributions of X2, . . . ,Xn are defined.
The same type of projection (summation/integration over all remaining
variables) is used to define marginal distributions on subsets of
variables (Xi1 , . . . ,Xik ) with {i1, . . . , ik} ⊆ {1, . . . , n}.
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RUNNING EXERCISE

An urn contains five blue, three green, and one red ball. Two balls are
randomly selected (without replacement).

Let X1 be the number of green balls selected and X2 the number of blue
balls selected. What is the joint mass function of (X1,X2)?
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INDEPENDENCE OF RANDOM VARIABLES

Two discrete random variables X and Y are independent iff for any
x ∈ ΩX , y ∈ ΩY it holds that pXY (x , y) = pX (x)pY (y).

Random variables X1, . . . ,Xn are pairwise independent iff for any
pair i, j and any xi ∈ ΩXi , xj ∈ ΩXj it holds that
pXi Xj (xi , xj) = pXi (xi)pXj (xj).

Random variables X1, . . . ,Xn are mutually independent iff for any
subset I ⊂ {1, . . . , n} it holds that the joint probability
mass/density function of (Xi)i∈I is given by

∏
i∈I pXi (xi) for any

xi ∈ ΩXi , i ∈ I.

Similar to independence of events, pairwise independence of random
variables does not imply their mutual independence. If we say that
random variables are independent without further specifications we are
referring to mutual independence.
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INDEPENDENCE OF RANDOM VARIABLES / 2

Some important properties and concepts with respect to independence
are:

The iid assumption — Random variables X1, . . . ,Xn are called
independent and identically distributed (iid) iff they are mutually
independent and each random variable has the same probability
distribution as the others.

Independence under transformations — Let X and Y be
independent random variables and f , g : R→ R are (measurable)
functions. Then, f (X) and g(Y ) are independent as well.
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CONDITIONAL DISTRIBUTIONS

If (X ,Y ) have a joint distribution with mass function pX ,Y , then the
conditional probability mass function for X given Y is defined by

pX |Y (x | y) =
p(X = x ,Y = y)

p(Y = y)
=

pX ,Y (x , y)
pY (y)

provided p(Y = y) > 0.

Likewise, in the continuous case, the conditional probability density
function is given by

pX |Y (x | y) =
pX ,Y (x , y)

pY (y)

provided pY (y) > 0. Then,

p(X ∈ A | Y = y) =
∫

A
pX |Y (x | y) dx .

The soundness of this definition is less obvious than in the discrete
case, due to conditioning on an event of probability 0 here.
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CONDITIONAL EXPECTED VALUE/EXPECTATION

Let X and Y be random variables, then the conditional expectation of X
given Y = y , denoted by E(X |Y = y), is given by

E(X |Y = y) =
{ ∑

x∈ΩX
x pX |Y (x | y) discrete case∫

ΩX
x pX |Y (x | y) dx continuous case

Interpretation: The expected value of X under the condition that Y = y
holds.

Note that E(X |Y = y) induces a mapping from ΩY to R according to
y 7→ E(X |Y = y). This function is called the conditional expectation of
X given Y and simply denoted by E(X |Y ). Note that E(X |Y ) is a
random variable!

E(X |Y ) can be also interpreted as a prediction of X under the
information encoded by the random variable Y .
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CONDITIONAL EXPECTED VALUE/EXPECTATION
/ 2

Some important properties of the conditional expected value are the
following. For any random variables X ,Y ,Z it holds that

Linearity — For any constants c1, c2 ∈ R it holds that
E(c1X + c2Y |Z ) = c1E(X |Z ) + c2E(Y |Z ).
Independence — If X and Y are independent random variables,
then E(X |Y ) = E(X).

Transformations — If f : R→ R is a (measurable) function, then
the conditional expectation of f (X) given Y = y is

E(f (X)|Y = y) =
{ ∑

x∈ΩX
f (x) pX |Y (x | y) discrete case∫

ΩX
f (x) pX |Y (x | y) dx continuous case

Law of total expectation — E(E(X |Y )) = E(X).

Tower property — E(E(X |Y ,Z )|Y ) = E(X |Y ).

© Supervised Learning – 22 / 23



CONDITIONAL VARIANCE

Let X and Y be random variables, then the conditional variance of X
given Y = y , denoted by Var(X |Y = y), is given by

Var(X |Y = y) = E
[
(X − E[X | Y = y ])2 | Y = y

]
Interpretation: Variance of the prediction E[X | Y ] for X .

Note that Var(X |Y = y) induces a mapping from ΩY to R according to
y 7→ Var(X |Y = y). This function is called the conditional variance of X
given Y and simply denoted by Var(X |Y ). Note that Var(X |Y ) is a
random variable!

An important property is the law of total variance:

Var(X) = E(Var(X | Y )) + Var(E(X | Y )).
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