RISK MINIMIZER AND OPTIMAL CONSTANT

Name Risk Minimizer Optimal Constant
L2 () = Bypely | 0 = 3y
L1 *(x) = med, | [y | X] f(x) = med(y")
0-1 h*(x) = argmax,cy, P(y = /| x)  h(x) = mode {y(’)}
Brier *(x) =Py =1|x) #;(x) = %i:y(")
Bernoulli (on probs) | 7*(x) =P(y =1|x) #(x)=1 iy(i)
Bernoulli (on scores) | *(x) = log (%) f(x) = |og7'7’%‘1

We see: For regression, the RMs model the conditional expectation and
median of the underlying distribution. This makes intuitive sense,
depending on your concept of how to best estimate central location /
how robust this location should be.
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For the 0-1 loss, the risk minimizer constructs the optimal Bayes

decision rule: We predict the class with maximal posterior probability.
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For Brier and Bernoulli, we predict the posterior probabilities (of the true
DGP!). Losses that have this desirable property are called proper

scoring (rules).

-1/1



