
RISK MINIMIZER AND OPTIMAL CONSTANT

Name Risk Minimizer Optimal Constant

L2 f∗(x) = Ey|x [y | x] f̂ (x) = 1
n

n∑
i=1

y (i)

L1 f∗(x) = medy|x [y | x] f̂ (x) = med(y (i))

0-1 h∗(x) = argmaxl∈Y P(y = l | x) ĥ(x) = mode
{

y (i)
}

Brier π∗(x) = P(y = 1 | x) π̂(x) = 1
n

n∑
i=1

y (i)

Bernoulli (on probs) π∗(x) = P(y = 1 | x) π̂(x) = 1
n

n∑
i=1

y (i)

Bernoulli (on scores) f∗(x) = log
(

P(y=1 | x)
1−P(y=1 | x)

)
f̂ (x) = log

n+1
n−1

We see: For regression, the RMs model the conditional expectation and
median of the underlying distribution. This makes intuitive sense,
depending on your concept of how to best estimate central location /
how robust this location should be.
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For the 0-1 loss, the risk minimizer constructs the optimal Bayes
decision rule: We predict the class with maximal posterior probability.
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For Brier and Bernoulli, we predict the posterior probabilities (of the true
DGP!). Losses that have this desirable property are called proper
scoring (rules).
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