
Introduction to Machine Learning

Linear Support Vector Machines
Soft-Margin SVM

Learning goals
Understand that the hard-margin
SVM problem is only solvable for
linearly separable data

Know that the soft-margin SVM
problem therefore allows margin
violations

The degree to which margin
violations are tolerated is controlled
by a hyperparameter



NON-SEPARABLE DATA

Assume that dataset D is not linearly separable.

Margin maximization becomes meaningless because the
hard-margin SVM optimization problem has contradictory
constraints and thus an empty feasible region.

© Introduction to Machine Learning – 1 / 9



MARGIN VIOLATIONS

We still want a large margin for most of the examples.
We allow violations of the margin constraints via slack vars ζ(i) ≥ 0

y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1 − ζ(i)

Even for separable data, a decision boundary with a few violations
and a large average margin may be preferable to one without any
violations and a small average margin.

We assume γ = 1 to not
further complicate pre-
sentation.
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MARGIN VIOLATIONS

Now we have two distinct and contradictory goals:
1 Maximize the margin.
2 Minimize margin violations.

Let’s minimize a weighted sum of them: 1
2∥θ∥

2 + C
∑n

i=1 ζ
(i)

Constant C > 0 controls the relative importance of the two parts.
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SOFT-MARGIN SVM

The linear soft-margin SVM is the convex quadratic program:

min
θ,θ0,ζ(i)

1
2
∥θ∥2 + C

n∑
i=1

ζ(i)

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1 − ζ(i) ∀ i ∈ {1, . . . , n},

and ζ(i) ≥ 0 ∀ i ∈ {1, . . . , n}.

This is called “soft-margin” SVM because the “hard” margin constraint
is replaced with a “softened” constraint that can be violated by an
amount ζ(i).
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LAGRANGE FUNCTION AND KKT
The Lagrange function of the soft-margin SVM is given by:

L(θ, θ0, ζ,α,µ) =
1
2
∥θ∥2

2 + C
n∑

i=1

ζ(i) −
n∑

i=1

αi

(
y (i)

(〈
θ, x(i)

〉
+ θ0

)
− 1 + ζ(i)

)
−

n∑
i=1

µiζ
(i) with Lagrange multipliers α and µ.

The KKT conditions for i = 1, . . . , n are:

αi ≥ 0, µi ≥ 0,

y (i)
(〈

θ, x(i)
〉
+ θ0

)
− 1 + ζ(i) ≥ 0, ζ(i) ≥ 0,

αi

(
y (i)

(〈
θ, x(i)

〉
+ θ0

)
− 1 + ζ(i)

)
= 0, ζ(i)µi = 0.

With these, we derive (see our optimization course) that

θ =
n∑

i=1
αiy (i)x(i), 0 =

n∑
i=1

αiy (i), αi = C − µi ∀i = 1, . . . , n.
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SOFT-MARGIN SVM DUAL FORM

Can be derived exactly as for the hard margin case.

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjy (i)y (j)
〈

x(i), x(j)
〉

s.t. 0 ≤ αi ≤ C,
n∑

i=1

αiy (i) = 0,

or, in matrix notation:

max
α∈Rn

1Tα− 1
2
αT diag(y)K diag(y)α

s.t. αT y = 0,

0 ≤ α ≤ C,

with K := XXT .

© Introduction to Machine Learning – 6 / 9



COST PARAMETER C

The parameter C controls the trade-off between the two conflicting
objectives of maximizing the size of the margin and minimizing the
frequency and size of margin violations.

It is known under different names, such as “trade-off parameter”,
“regularization parameter”, and “complexity control parameter”.

For sufficiently large C margin violations become extremely costly,
and the optimal solution does not violate any margins if the data is
separable. The hard-margin SVM is obtained as a special case.
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SUPPORT VECTORS
There are three types of training examples:

Non-SVs have αi = 0 (⇒ µi = C ⇒ ζ(i) = 0) and can be removed from
the problem without changing the solution. Their margin yf (x) ≥ 1. They
are always classified correctly and are never inside of the margin.

SVs with 0 < αi < C (⇒ µi > 0 ⇒ ζ(i) = 0) are located exactly on the
margin and have yf (x) = 1.

SVs with αi = C have an associated slack ζ(i) ≥ 0. They can be on the
margin or can be margin violators with yf (x) < 1 (they can even be
misclassified if ζ(i) ≥ 1).

As for hard-margin case: on the margin we can have SVs and non-SVs.
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UNIQUENESS OF THE SOLUTION

The primal and the dual form of the SVM are convex problems, so each
local minimum is a global minimum.
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