Introduction to Machine Learning

Linear Support Vector Machines
Soft-Margin SVM

Learning goals

@ Understand that the hard-margin
SVM problem is only solvable for
linearly separable data

@ Know that the soft-margin SVM
problem therefore allows margin
violations

@ The degree to which margin
violations are tolerated is controlled
by a hyperparameter
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NON-SEPARABLE DATA

1.0

0.5 [} %

0.0 ®

-0.5

-1.0
-0.5 0.0 0.5 1.0

@ Assume that dataset D is not linearly separable.

@ Margin maximization becomes meaningless because the
hard-margin SVM optimization problem has contradictory
constraints and thus an empty feasible region.
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MARGIN VIOLATIONS

@ We still want a large margin for most of the examples.
@ We allow violations of the margin constraints via slack vars C(’) >0

y( (<97 x(">> i 00) >1-¢0
@ Even for separable data, a decision boundary with a few violations

and a large average margin may be preferable to one without any
violations and a small average margin.

We assume v = 1 to not
further complicate pre-
sentation.
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MARGIN VIOLATIONS

@ Now we have two distinct and contradictory goals:

@ Maximize the margin.
© Minimize margin violations.

@ Let's minimize a weighted sum of them: (0|2 + C 37, ¢1)

@ Constant C > 0 controls the relative importance of the two parts.
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SOFT-MARGIN SVM

The linear soft-margin SVM is the convex quadratic program:

1 "
min  —||8|>+C ()
o, g0l e3¢

st yD <<0,x(’)>+90) >1-¢W vie{1,...,n},
and  ¢D>o0 vie{1,...,n}

This is called “soft-margin” SVM because the “hard” margin constraint
is replaced with a “softened” constraint that can be violated by an
amount ¢(.

Introduction to Machine Learning — 4/9

X X



LAGRANGE FUNCTION AND KKT

The Lagrange function of the soft-margin SVM is given by: x
£(6.00,C.o) = 3 1013+ C D00 D, (v ((0.%7) +65) —1+¢0) X
9 AR 9 2 2 — & 9
n
- Z u,'g‘(’) with Lagrange multipliers a and p. x x

i=1

The KKT conditions for i = 1,..., nare:
a; >0, Hi = 0,
YO ({0.50) +65) —1+¢ >0, 0 >o,
(07 (y(l) (<9,X(I)> + 00) -1+ C(’)) = 0, Q(i)u; =0.

With these, we derive (see our optimization course) that
n

QIZOA/}/(I)X(’), OIZOL,‘}/(I), Oé,'Icpr,‘ Vi:1,...,n.

i=1 i=1
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SOFT-MARGIN SVM DUAL FORM
Can be derived exactly as for the hard margin case.
= o IS S a0 () xO)

i=1 j=1
s.t. 0 < (&7 < C,

n »
S an —o.
i=1

or, in matrix notation:

1
max 10— EaTdiag(y)K diag(y)a

s.t. aTy:O,
0<a<C,

with K := XXT.
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COST PARAMETER C

@ The parameter C controls the trade-off between the two conflicting
objectives of maximizing the size of the margin and minimizing the
frequency and size of margin violations.

@ It is known under different names, such as “trade-off parameter”,
“regularization parameter”, and “complexity control parameter”.
@ For sufficiently large C margin violations become extremely costly,

and the optimal solution does not violate any margins if the data is
separable. The hard-margin SVM is obtained as a special case.
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SUPPORT VECTORS

There are three types of training examples:

@ Non-SVs have o; = 0 (= ; = C = ¢) = 0) and can be removed from
the problem without changing the solution. Their margin yf(x) > 1. They
are always classified correctly and are never inside of the margin.

@ SVswith0 < a; < C (= i > 0= ¢() = 0) are located exactly on the
margin and have yf(x) = 1.

@ SVs with o; = C have an associated slack ¢() > 0. They can be on the
margin or can be margin violators with yf(x) < 1 (they can even be
misclassified if (() > 1).

As for hard-margin case: on the margin we can have SVs and non-SVs.

1.0 N
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UNIQUENESS OF THE SOLUTION

The primal and the dual form of the SVM are convex problems, so each
local minimum is a global minimum.
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