Introduction to Machine Learning

Linear Support Vector Machines
Support Vector Machine Training

Learning goals
@ Know that the SVM problem is not
differentiable
@ Know how to optimize the SVM
< problem in the primal via subgradient
descent

@ Know how to optimize SVM in the
dual formulation via pairwise
coordinate ascent
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SUPPORT VECTOR MACHINE TRAINING

@ Until now, we have ignored the issue of solving the various convex
optimization problems.

@ The first question is whether we should solve the primal or the
dual problem.

@ In the literature SVMs are usually trained in the dual.

@ However, SVMs can be trained both in the primal and the dual —
each approach has its advantages and disadvantages.

@ ltis not easy to create an efficient SVM solver, and often
specialized appraoches have been developed, we only cover basic
ideas here.
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TRAINING SVM IN THE PRIMAL

Unconstrained formulation of soft-margin SVM:

S D)

where L (y, f) = max(0,1 — yf) and f(x | 8) = 87 x + 6,.
(We inconsequentially changed the regularization constant.)

We cannot directly use GD, as the above is not differentiable.

Solutions:

@ Use smoothed loss (squared hinge, huber), then do GD.
NB: Will not create a sparse SVM if we do not add extra tricks.

© Use subgradient methods.

© Do stochastic subgradient descent.
Pegasos: Primal Estimated sub-GrAdient SOlver for SVM.
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PEGASOS: SSGD IN THE PRIMAL

Approximate the risk by a stochastic 1-sample version:
A . .
1012+ L (0, (x0 ] 6) )

With: f(x | ) = 8"x + 6y and L (y, f) = max(0,1 — yf)
The subgradient for 8 is \@ — y(x1,;_,

Stochastic subgradient descent (without intercept 6p)
1: fort=1,2,...do
2 Pick step size «
3: Randomly pick an index i
4 IFyDf (xD) < 1 set OIF = (1 — Aa)Ol + ay()x()
5
6:

If yf (x(0) > 1 set 611 = (1 — )0l
end for

Note the weight decay due to the L2-regularization.
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TRAINING SVM IN THE DUAL

The dual problem of the soft-margin SVM is

max, Za,_ ,Zzaay()yo)< ()7x(f)>

i=1 j=1
st 0<wo<C Za,-y(") -
i=1
We could solve this problem using coordinate ascent. That means we

optimize w.r.t. a1, for example, while holding o, ..., oy, fixed.

But: We cannot make any progress since a4 is determined by
>y aiy?) = ol
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TRAINING SVM IN THE DUAL /2

Solution: Update two variables simultaneously
n n n
1 N . .
maxe, 2,21 - 33 aiayyY <x(:)7 xu>>

=1 j=1

n
st. 0<a<C Y ay’=o0

i=1

Pairwise coordinate ascent in the dual
1: Initialize o = 0 (or more cleverly)
2. fort=1,2,...do
3 Select some pair «;, o to update next
4 Optimize dual w.r.t. «;, o, while holding a (k # i, j) fixed
5: end for

The objective is quadratic in the pair, and s := y)a; + yU)a; must stay
constant. So both « are changed by same (absolute) amount, the signs of the
change depend on the labels.
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TRAINING SVM IN THE DUAL /3

Assume we are in a valid state, 0 < «; < C. Then we chose' two
observations (encircled in red) for the next iteration. Note they have
opposite labels so the sign of their change is equal.
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'There are heuristics to pick the observations to speed up convergence.
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TRAINING SVM IN THE DUAL

n

maxe Z": a — % 3 i gy DV <x(f>7 x(i)>
i=1

i=1 j=1

n
st. 0<a<C Y ay’=o0

i=1

We move on the linear constraint until the pair-optimum or the bounday (here: C = 1).
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TRAINING SVM IN THE DUAL /2

Sequential Minimal Optimization (SMO) exploits the fact that effectively O O X
we only need to solve a one-dimensional quadratic problem, over in
interval, for which an analytical solution exists. x O
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