
Introduction to Machine Learning

Linear Support Vector Machines
Support Vector Machine Training

Learning goals
Know that the SVM problem is not
differentiable

Know how to optimize the SVM
problem in the primal via subgradient
descent

Know how to optimize SVM in the
dual formulation via pairwise
coordinate ascent



SUPPORT VECTOR MACHINE TRAINING

Until now, we have ignored the issue of solving the various convex
optimization problems.

The first question is whether we should solve the primal or the
dual problem.

In the literature SVMs are usually trained in the dual.

However, SVMs can be trained both in the primal and the dual –
each approach has its advantages and disadvantages.

It is not easy to create an efficient SVM solver, and often
specialized appraoches have been developed, we only cover basic
ideas here.
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TRAINING SVM IN THE PRIMAL

Unconstrained formulation of soft-margin SVM:

min
θ,θ0

λ

2
∥θ∥2 +

n∑
i=1

L
(

y (i), f
(

x(i) | θ
))

where L (y , f ) = max(0, 1 − yf ) and f (x | θ) = θT x + θ0.
(We inconsequentially changed the regularization constant.)

We cannot directly use GD, as the above is not differentiable.

Solutions:
1 Use smoothed loss (squared hinge, huber), then do GD.

NB: Will not create a sparse SVM if we do not add extra tricks.
2 Use subgradient methods.
3 Do stochastic subgradient descent.

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM.
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PEGASOS: SSGD IN THE PRIMAL

Approximate the risk by a stochastic 1-sample version:
λ

2
∥θ∥2 + L

(
y (i), f

(
x(i) | θ

))
With: f (x | θ) = θT x + θ0 and L (y , f ) = max(0, 1 − yf )
The subgradient for θ is λθ − y (i)x(i)Iyf<1

Stochastic subgradient descent (without intercept θ0)

1: for t = 1, 2, ... do
2: Pick step size α
3: Randomly pick an index i
4: If y (i)f

(
x(i)

)
< 1 set θ[t+1] = (1 − λα)θ[t] + αy (i)x(i)

5: If y (i)f
(
x(i)

)
≥ 1 set θ[t+1] = (1 − λα)θ[t]

6: end for

Note the weight decay due to the L2-regularization.
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TRAINING SVM IN THE DUAL

The dual problem of the soft-margin SVM is

maxα

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjy (i)y (j)
〈

x(i), x(j)
〉

s.t. 0 ≤ αi ≤ C
n∑

i=1

αiy (i) = 0

We could solve this problem using coordinate ascent. That means we
optimize w.r.t. α1, for example, while holding α2, ..., αn fixed.

But: We cannot make any progress since α1 is determined by∑n
i=1 αiy (i) = 0!
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TRAINING SVM IN THE DUAL / 2

Solution: Update two variables simultaneously

maxα

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαj y
(i)y (j)

〈
x(i), x(j)

〉
s.t. 0 ≤ αi ≤ C

n∑
i=1

αi y
(i) = 0

Pairwise coordinate ascent in the dual
1: Initialize α = 0 (or more cleverly)
2: for t = 1, 2, ... do
3: Select some pair αi , αj to update next
4: Optimize dual w.r.t. αi , αj , while holding αk (k ̸= i, j) fixed
5: end for

The objective is quadratic in the pair, and s := y (i)αi + y (j)αj must stay
constant. So both α are changed by same (absolute) amount, the signs of the
change depend on the labels.
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TRAINING SVM IN THE DUAL / 3

Assume we are in a valid state, 0 ≤ αi ≤ C. Then we chose1 two
observations (encircled in red) for the next iteration. Note they have
opposite labels so the sign of their change is equal.

1There are heuristics to pick the observations to speed up convergence.
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TRAINING SVM IN THE DUAL

maxα

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαj y
(i)y (j)

〈
x(i), x(j)

〉
s.t. 0 ≤ αi ≤ C

n∑
i=1

αi y
(i) = 0

We move on the linear constraint until the pair-optimum or the bounday (here: C = 1).
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TRAINING SVM IN THE DUAL / 2

Sequential Minimal Optimization (SMO) exploits the fact that effectively
we only need to solve a one-dimensional quadratic problem, over in
interval, for which an analytical solution exists.
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