Introduction to Machine Learning

Linear Support Vector Machines Support Vector Machine Training

Learning goals

- Know that the SVM problem is not differentiable
- Know how to optimize the SVM problem in the primal via subgradient descent
- Know how to optimize SVM in the dual formulation via pairwise coordinate ascent

SUPPORT VECTOR MACHINE TRAINING

- Until now, we have ignored the issue of solving the various convex optimization problems.
- The first question is whether we should solve the **primal** or the **dual problem**.
- In the literature SVMs are usually trained in the dual.
- However, SVMs can be trained both in the primal and the dual each approach has its advantages and disadvantages.
- It is not easy to create an efficient SVM solver, and often specialized appraoches have been developed, we only cover basic ideas here.

× 0 0 × × ×

TRAINING SVM IN THE PRIMAL

Unconstrained formulation of soft-margin SVM:

$$\min_{\boldsymbol{\theta}, \theta_0} \quad \frac{\lambda}{2} \|\boldsymbol{\theta}\|^2 + \sum_{i=1}^n L\left(\boldsymbol{y}^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$$

where $L(y, f) = \max(0, 1 - yf)$ and $f(\mathbf{x} \mid \theta) = \theta^T \mathbf{x} + \theta_0$. (We inconsequentially changed the regularization constant.)

We cannot directly use GD, as the above is not differentiable.

Solutions:

- Use smoothed loss (squared hinge, huber), then do GD.
 NB: Will not create a sparse SVM if we do not add extra tricks.
- **2** Use **subgradient** methods.
- O stochastic subgradient descent. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM.

× × 0 × × ×

PEGASOS: SSGD IN THE PRIMAL

Approximate the risk by a stochastic 1-sample version:

$$\frac{\lambda}{2} \|\boldsymbol{\theta}\|^2 + L\left(\boldsymbol{y}^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$$

With: $f(\mathbf{x} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^T \mathbf{x} + \theta_0$ and $L(y, f) = \max(0, 1 - yf)$ The subgradient for $\boldsymbol{\theta}$ is $\lambda \boldsymbol{\theta} - y^{(i)} \mathbf{x}^{(i)} \mathbb{I}_{yf < 1}$

Stochastic subgradient descent (without intercept θ_0)

- 1: **for** *t* = 1, 2, ... **do**
- 2: Pick step size α
- 3: Randomly pick an index *i*

4: If
$$y^{(i)}f(\mathbf{x}^{(i)}) < 1$$
 set $\theta^{[t+1]} = (1 - \lambda \alpha)\theta^{[t]} + \alpha y^{(i)}\mathbf{x}^{(i)}$

5: If
$$y^{(i)}f(\mathbf{x}^{(i)}) \ge 1$$
 set $\theta^{[t+1]} = (1 - \lambda \alpha)\theta^{[t]}$

6: end for

Note the weight decay due to the L2-regularization.

TRAINING SVM IN THE DUAL

The dual problem of the soft-margin SVM is

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$$

s.t. $0 \le \alpha_{i} \le C \sum_{i=1}^{n} \alpha_{i} y^{(i)} = 0$

We could solve this problem using coordinate ascent. That means we optimize w.r.t. α_1 , for example, while holding $\alpha_2, ..., \alpha_n$ fixed.

But: We cannot make any progress since α_1 is determined by $\sum_{i=1}^{n} \alpha_i y^{(i)} = 0!$

TRAINING SVM IN THE DUAL / 2

Solution: Update two variables simultaneously

$$\begin{aligned} \max_{\alpha} \quad & \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \boldsymbol{y}^{(i)} \boldsymbol{y}^{(j)} \left\langle \boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)} \right\rangle \\ \text{s.t.} \quad & \boldsymbol{0} \leq \alpha_{i} \leq C \quad \sum_{i=1}^{n} \alpha_{i} \boldsymbol{y}^{(i)} = \boldsymbol{0} \end{aligned}$$

× 0 0 × 0 × ×

Pairwise coordinate ascent in the dual

- 1: Initialize lpha= 0 (or more cleverly)
- 2: for t = 1, 2, ... do
- 3: Select some pair α_i, α_j to update next
- 4: Optimize dual w.r.t. α_i, α_j , while holding α_k ($k \neq i, j$) fixed

5: end for

The objective is quadratic in the pair, and $s := y^{(i)}\alpha_i + y^{(j)}\alpha_j$ must stay constant. So both α are changed by same (absolute) amount, the signs of the change depend on the labels.

TRAINING SVM IN THE DUAL / 3

Assume we are in a valid state, $0 \le \alpha_i \le C$. Then we chose¹ two observations (encircled in red) for the next iteration. Note they have opposite labels so the sign of their change is equal.

× 0 × × ×

¹There are heuristics to pick the observations to speed up convergence.

TRAINING SVM IN THE DUAL

$$\begin{aligned} \max_{\alpha} & \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \boldsymbol{y}^{(i)} \boldsymbol{y}^{(j)} \left\langle \boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)} \right\rangle \\ \text{s.t.} & \boldsymbol{0} \leq \alpha_{i} \leq C \quad \sum_{i=1}^{n} \alpha_{i} \boldsymbol{y}^{(i)} = \boldsymbol{0} \end{aligned}$$

We move on the linear constraint until the pair-optimum or the bounday (here: C = 1).

× 0 0 × 0 × ×

TRAINING SVM IN THE DUAL / 2

Sequential Minimal Optimization (SMO) exploits the fact that effectively we only need to solve a one-dimensional quadratic problem, over in interval, for which an analytical solution exists.

× 0 0 × 0 × ×