
Introduction to Machine Learning

Linear Support Vector Machines
Linear Hard Margin SVM

Learning goals
Know that the hard-margin SVM
maximizes the margin between data
points and hyperplane

Know that this is a quadratic program

Know that support vectors are the
data points closest to the separating
hyperplane



LINEAR CLASSIFIERS

We want study how to build a binary, linear classifier from solid
geometrical principles.

Which of these two classifiers is “better”?
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LINEAR CLASSIFIERS / 2

We want study how to build a binary, linear classifier from solid
geometrical principles.

Which of these two classifiers is “better”?

→ The decision boundary on the right has a larger safety margin.

© Introduction to Machine Learning – 2 / 11



SUPPORT VECTOR MACHINES: GEOMETRY

For labeled data D =
((

x(1), y (1)
)
, . . . ,

(
x(n), y (n)

))
, with

y (i) ∈ {−1,+1}:

Assume linear separation by f (x) = θ⊤x + θ0, such that all
+-observations are in the positive halfspace

{x ∈ X : f (x) > 0}

and all −-observations are in the negative halfspace

{x ∈ X : f (x) < 0}.

For a linear separating hyperplane, we have

y (i)
(
θ⊤x(i) + θ0

)
︸ ︷︷ ︸

=f(x(i))

> 0 ∀i ∈ {1, 2, ..., n}.
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SUPPORT VECTOR MACHINES: GEOMETRY / 2

d
(

f , x(i)
)
=

y (i)f
(
x(i)

)
∥θ∥

= y (i)θ
T x(i) + θ0

∥θ∥
computes the (signed) distance to the separating hyperplane
f (x) = 0, positive for correct classifications, negative for incorrect.

This expression becomes negative for misclassified points.
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SUPPORT VECTOR MACHINES: GEOMETRY / 3

The distance of f to the whole dataset D is the smallest distance

γ = min
i

{
d
(

f , x(i)
)}

.

This represents the “safety margin”, it is positive if f separates and
we want to maximize it.
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MAXIMUM MARGIN SEPARATION

We formulate the desired property of a large “safety margin” as an
optimization problem:

max
θ,θ0

γ

s.t. d
(

f , x(i)
)
≥ γ ∀ i ∈ {1, . . . , n}.

The constraints mean: We require that any instance i should have
a “safety” distance of at least γ from the decision boundary defined
by f (= θT x + θ0) = 0.

Our objective is to maximize the “safety” distance.
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MAXIMUM MARGIN SEPARATION

We reformulate the problem:

max
θ,θ0

γ

s.t.
y (i)

(〈
θ, x(i)

〉
+ θ0

)
∥θ∥

≥ γ ∀ i ∈ {1, . . . , n}.

The inequality is rearranged by multiplying both sides with ∥θ∥:

max
θ,θ0

γ

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ ∥θ∥γ ∀ i ∈ {1, . . . , n}.
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MAXIMUM MARGIN SEPARATION / 2

Note that the same hyperplane does not have a unique
representation:

{x ∈ X | θ⊤x = 0} = {x ∈ X | c · θ⊤x = 0}

for arbitrary c ̸= 0.

To ensure uniqueness of the solution, we make a reference choice
– we only consider hyperplanes with ∥θ∥ = 1/γ:

max
θ,θ0

γ

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1 ∀ i ∈ {1, . . . , n}.
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MAXIMUM MARGIN SEPARATION / 3

Substituting γ = 1/∥θ∥ in the objective yields:

max
θ,θ0

1
∥θ∥

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1 ∀ i ∈ {1, . . . , n}.

Maximizing 1/∥θ∥ is the same as minimizing ∥θ∥, which is the
same as minimizing 1

2∥θ∥
2:

min
θ,θ0

1
2
∥θ∥2

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1 ∀ i ∈ {1, . . . , n}.
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QUADRATIC PROGRAM

We derived the following optimization problem:

min
θ,θ0

1
2
∥θ∥2

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1 ∀ i ∈ {1, . . . , n}.

This turns out to be a convex optimization problem – particularly, a
quadratic program: The objective function is quadratic, and the
constraints are linear inequalities.

This is called the primal problem. We will later show that we can also
derive a dual problem from it.

We will call this the linear hard-margin SVM.
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SUPPORT VECTORS

There exist instances (x(i), y (i)) with minimal margin
y (i)f

(
x(i)

)
= 1, fulfilling the inequality constraints with equality.

They are called support vectors (SVs). They are located exactly
at a distance of γ = 1/∥θ∥ from the separating hyperplane.

It is already geometrically obvious that the solution does not
depend on the non-SVs! We could delete them from the data and
would arrive at the same solution.
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