Introduction to Machine Learning

Linear Support Vector Machines
Linear Hard Margin SVM

Learning goals

@ Know that the hard-margin SVM
maximizes the margin between data
points and hyperplane

@ Know that this is a quadratic program

@ Know that support vectors are the
data points closest to the separating
hyperplane

X X



LINEAR CLASSIFIERS

@ We want study how to build a binary, linear classifier from solid
geometrical principles.

@ Which of these two classifiers is “better”?
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LINEAR CLASSIFIERS /2

@ We want study how to build a binary, linear classifier from solid
geometrical principles.

@ Which of these two classifiers is “better’?
— The decision boundary on the right has a larger safety margin.
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SUPPORT VECTOR MACHINES: GEOMETRY

For labeled data D = ((x(1), y()) ..., (x(", y(M)), with
y) e {—1,+1}:
@ Assume linear separation by f(x) = 6 " x + 6y, such that all
+-observations are in the positive halfspace

{x e X :f(x)>0}

and all —-observations are in the negative halfspace

{x e X : f(x) <0}.

@ For a linear separating hyperplane, we have
O (eTx(") + eo) >0 Vie{1,2,...n.
~—_——

:f(x(i))
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SUPPORT VECTOR MACHINES: GEOMETRY /2

, (i)f( (i)) L 0Tx() 1+ p
y X x\V + g

d f7x(’) — :y(/)

( ) el 0]

computes the (signed) distance to the separating hyperplane
f(x) = 0, positive for correct classifications, negative for incorrect.

@ This expression becomes negative for misclassified points.
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SUPPORT VECTOR MACHINES: GEOMETRY /3

@ The distance of f to the whole dataset D is the smallest distance

y = min {d (f, x(')> }

@ This represents the “safety margin”, it is positive if f separates and
we want to maximize it.
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MAXIMUM MARGIN SEPARATION

We formulate the desired property of a large “safety margin” as an
optimization problem:

maxXx
0,6, i

s.t. d(f,x(’)) >y Vie{l,...,n}.

@ The constraints mean: We require that any instance i should have
a “safety” distance of at least v from the decision boundary defined
by f(= 0Tx + ) = 0.

@ Our objective is to maximize the “safety” distance.
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MAXIMUM MARGIN SEPARATION

We reformulate the problem:

max
0,6y i

y( (<9’ x(i)> + 90)

st
161l

>~ Yie{l,...,n}.

@ The inequality is rearranged by multiplying both sides with ||6||:

max
0700 fy

st yO (<0,x(">> + 90) > |6)y Vie{1,....nh.
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MAXIMUM MARGIN SEPARATION /2

@ Note that the same hyperplane does not have a unique
representation:

{xeX|0'x=0}={xecX|c-0"x=0}

for arbitrary ¢ # 0.
@ To ensure uniqueness of the solution, we make a reference choice
— we only consider hyperplanes with ||@|| = 1/~:

max
0,60 i

sty <<0,x(’)> + 90> >1 Vie{t,...,n}.

Introduction to Machine Learning — 8/ 11

X X



MAXIMUM MARGIN SEPARATION /3

@ Substituting v = 1/|0|| in the objective yields:

sty <<0,x(’)>—|—90>21 Vie{1,...,n}.

@ Maximizing 1/]|0|| is the same as minimizing ||@||, which is the

same as minimizing 3(|0||:

1
min f||0||2
2

s.t. y() <<0,x(’)> —i—@o) >1 Vie{1,...,n}
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QUADRATIC PROGRAM
We derived the following optimization problem:
1
min —101
6,60 2

s.t. y () (<9,x(’)> +00) >1 Vie{1,...,n}.

This turns out to be a convex optimization problem — particularly, a
quadratic program: The objective function is quadratic, and the
constraints are linear inequalities.

This is called the primal problem. We will later show that we can also
derive a dual problem from it.

We will call this the linear hard-margin SVM.
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SUPPORT VECTORS

@ There exist instances (x(), y()) with minimal margin
yOf (xD) = 1, fulfilling the inequality constraints with equality.

@ They are called support vectors (SVs). They are located exactly
at a distance of v = 1/||@|| from the separating hyperplane.

@ It is already geometrically obvious that the solution does not
depend on the non-SVs! We could delete them from the data and
would arrive at the same solution.
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