
Introduction to Machine Learning

Linear Support Vector Machines
Hard-Margin SVM Dual

Learning goals
Know how to derive the SVM dual
problem



HARD MARGIN SVM DUAL

We before derived the primal quadratic program for the hard margin
SVM. We could directly solve this, but traditionally the SVM is solved in
the dual and this has some advantages. In any case, many algorithms
and derivations are based on it, so we need to know it.

min
θ,θ0

1
2
∥θ∥2

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1 ∀ i ∈ {1, . . . , n}.

The Lagrange function of the SVM optimization problem is

L(θ, θ0,α) =
1
2
∥θ∥2 −

n∑
i=1

αi

[
y (i)

(〈
θ, x(i)

〉
+ θ0

)
− 1

]
s.t. αi ≥ 0 ∀ i ∈ {1, . . . , n}.

The dual form of this problem is

max
α

min
θ,θ0

L(θ, θ0,α).
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HARD MARGIN SVM DUAL / 2

Notice how the (p+1) decision variables (θ, θ0) have become n decisions
variables α, as constraints turned into variables and vice versa. Now every
data point has an associated non-negative weight.

L(θ, θ0,α) =
1
2
∥θ∥2 −

n∑
i=1

αi

[
y (i)

(〈
θ, x(i)

〉
+ θ0

)
− 1

]
s.t. αi ≥ 0 ∀ i ∈ {1, . . . , n}.

We find the stationary point of L(θ, θ0,α) w.r.t. θ, θ0 and obtain

θ =
n∑

i=1

αiy (i)x(i),

0 =
n∑

i=1

αiy (i) ∀ i ∈ {1, . . . , n}.
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By inserting these expressions & simplifying we obtain the dual problem

max
α∈Rn

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjy (i)y (j)
〈

x(i), x(j)
〉

s.t.
n∑

i=1

αiy (i) = 0,

αi ≥ 0 ∀i ∈ {1, . . . , n},

or, equivalently, in matrix notation:

max
α∈Rn

1Tα− 1
2
αT diag(y)K diag(y)α

s.t. αT y = 0,

α ≥ 0,

with K := XXT .
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If (θ, θ0,α) fulfills the KKT conditions (stationarity, primal/dual feasibility,
complementary slackness), it solves both the primal and dual problem (strong
duality).
Under these conditions, and if we solve the dual problem and obtain α̂, we
know that θ is a linear combination of our data points:

θ̂ =
n∑

i=1

α̂iy (i)x(i)

Complementary slackness means:

α̂i

[
y (i)

(〈
θ, x(i)

〉
+ θ0

)
− 1

]
= 0 ∀ i ∈ {1, ..., n}.
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θ̂ =
n∑

i=1

α̂iy (i)x(i)

α̂i

[
y (i)

(〈
θ, x(i)

〉
+ θ0

)
− 1

]
= 0 ∀ i ∈ {1, ..., n}.

So either α̂i = 0, and is not active in the linear combination, or α̂i > 0,
then y (i)

(〈
θ, x(i)

〉
+ θ0

)
= 1, and (x(i), y (i)) has minimal margin and is a

support vector!

We see that we can directly extract the support vectors from the dual
variables and the θ solution only depends on them.

We can reconstruct the bias term θ0 from any support vector:

θ0 = y (i) −
〈
θ, x(i)

〉
.
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DUAL VARIABLE AND SUPPORT VECTORS

SVs are defined to be points with α̂i > 0. In the case of hard
margin linear SVM, the SVs are on the edge of margin.

However, not all points on edge of margin are necessarily SVs.

In other words, it is possible that both α̂i = 0 and
y (i)

(
⟨θ, x(i)⟩

)
− 1 = 0 hold.
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