Introduction to Machine Learning

Linear Support Vector Machines
SVMs and Empirical Risk Minimization

Learning goals
ssssss @ Know why the SVM problem can be

o : E T understood as (regularized) empirical
- - risk minimization problem
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@ Know that the corresponding loss is
the hinge loss



REGULARIZED EMPIRICAL RISK MINIMIZATION

We motivated SVMs from a geometrical point of view: The margin
is a distance to be maximized.
This is not really true anymore under margin violations: The slack

variables are not really distances. Instead, - C(’) is the distance
by which an observation violates the margin.

This already indicates that transferring the geometric intuition from
hard-margin SVMs to the soft-margin case has its limits.

There is an alternative approach to understanding soft-margin
SVMs: They are regularized empirical risk minimizers.

Introduction to Machine Learning — 1/6

X X



SOFT-MARGIN SVM WITH ERM AND HINGE LOSS
We derived this QP for the soft-margin SVM:
i ligle = )
omin, gllOl*+ C’;C
sty <<0,x(")> +90) >1-¢W vie{1,...,n},
and ¢D>0 vie{1,....n}.

In the optimum, the inequalities will hold with equality (as we minimize
the slacks), so ¢() = 1 — y()f (x(V), but the lowest value ¢! can take
is 0 (we do no get a bonus for points beyond the margin on the correct
side). So we can rewrite the above:

1 . 0 (o). =y ity <
2\|0||2+C;L<y’,f(x’)>,L(y,f)_ . i

We can also write L (y, f) = max(1 — yf,0).
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SOFT-MARGIN SVM WITH ERM AND HINGE LOSS
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Remp(6) = fueuﬂcz (v0,7 (x0)); Ly, 7) = max(1 = y1,0)

@ This now obviously L2-regularized empirical risk minimization.

@ Actually, a lot of ERM theory was established when Vapnik
(co-)invented the SVM in the beginning of the 90s.

@ L is called hinge loss — as it looks like a door hinge.

@ |t is a continuous, convex, upper bound on the zero-one loss. In a
certain sense it is the best upper convex relaxation of the 0-1.

Introduction to Machine Learning — 3/6

X X



SOFT-MARGIN SVM WITH ERM AND HINGE LOSS
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SOFT-MARGIN SVM WITH ERM AND HINGE LOSS
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n
%Honz + C;L (v (x9)); L(y. 1) = max(1 — y1.0)

@ The ERM interpretation does not require any of the terms — the
loss or the regularizer — to be geometrically meaningful.

@ The above form is a very compact form to define the convex
optimization problem of the SVM.

@ ltis "well-behaved" due to convexity, every minimum is global.

@ The above is convex, without constraints! We might see this as
"easier to optimize" than the QP from before. But note it is
non-differentiable due to the hinge. So specialized techniques
(e.g. sub-gradient) would have to be used.

@ Some literature claims this primal cannot be easily kernelized -
which is not really true.
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OTHER LOSSES

SVMs can easily be generalized by changing the loss function.
@ Squared hinge loss / Least Squares SVM:
L(y,f) = max(0, (1 — yf)?)
@ Huber loss (smoothed hinge loss)
@ Bernoulli/Log loss. This is L2-regularized logistic regression!

@ NB: These other losses usually do not generate sparse solutions
in terms of data weights and hence have no "support vectors".
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