
Introduction to Machine Learning

Linear Support Vector Machines
SVMs and Empirical Risk Minimization

Learning goals
Know why the SVM problem can be
understood as (regularized) empirical
risk minimization problem

Know that the corresponding loss is
the hinge loss



REGULARIZED EMPIRICAL RISK MINIMIZATION

We motivated SVMs from a geometrical point of view: The margin
is a distance to be maximized.

This is not really true anymore under margin violations: The slack
variables are not really distances. Instead, γ · ζ(i) is the distance
by which an observation violates the margin.

This already indicates that transferring the geometric intuition from
hard-margin SVMs to the soft-margin case has its limits.

There is an alternative approach to understanding soft-margin
SVMs: They are regularized empirical risk minimizers.
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SOFT-MARGIN SVM WITH ERM AND HINGE LOSS

We derived this QP for the soft-margin SVM:

min
θ,θ0,ζ(i)

1
2
∥θ∥2 + C

n∑
i=1

ζ(i)

s.t. y (i)
(〈

θ, x(i)
〉
+ θ0

)
≥ 1 − ζ(i) ∀ i ∈ {1, . . . , n},

and ζ(i) ≥ 0 ∀ i ∈ {1, . . . , n}.

In the optimum, the inequalities will hold with equality (as we minimize
the slacks), so ζ(i) = 1 − y (i)f

(
x(i)

)
, but the lowest value ζ(i) can take

is 0 (we do no get a bonus for points beyond the margin on the correct
side). So we can rewrite the above:

1
2
∥θ∥2 + C

n∑
i=1

L
(

y (i), f
(

x(i)
))

; L (y , f ) =

{
1 − yf if yf ≤ 1

0 if yf > 1

We can also write L (y , f ) = max(1 − yf , 0).
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Remp(θ) =
1
2
∥θ∥2 +C

n∑
i=1

L
(

y (i), f
(

x(i)
))

; L (y , f ) = max(1− yf , 0)

This now obviously L2-regularized empirical risk minimization.

Actually, a lot of ERM theory was established when Vapnik
(co-)invented the SVM in the beginning of the 90s.

L is called hinge loss – as it looks like a door hinge.

It is a continuous, convex, upper bound on the zero-one loss. In a
certain sense it is the best upper convex relaxation of the 0-1.
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1
2
∥θ∥2 + C

n∑
i=1

L
(

y (i), f
(

x(i)
))

; L (y , f ) = max(1 − yf , 0)

The ERM interpretation does not require any of the terms – the
loss or the regularizer – to be geometrically meaningful.

The above form is a very compact form to define the convex
optimization problem of the SVM.

It is "well-behaved" due to convexity, every minimum is global.

The above is convex, without constraints! We might see this as
"easier to optimize" than the QP from before. But note it is
non-differentiable due to the hinge. So specialized techniques
(e.g. sub-gradient) would have to be used.

Some literature claims this primal cannot be easily kernelized -
which is not really true.
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OTHER LOSSES

SVMs can easily be generalized by changing the loss function.

Squared hinge loss / Least Squares SVM:
L (y , f ) = max(0, (1 − yf )2)

Huber loss (smoothed hinge loss)

Bernoulli/Log loss. This is L2-regularized logistic regression!

NB: These other losses usually do not generate sparse solutions
in terms of data weights and hence have no "support vectors".
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