
Introduction to Machine Learning

Information Theory
Source Coding and Cross-Entropy

Learning goals
Know connection between source
coding and (cross-)entropy

Know that the entropy of the source
distribution is the lower bound for the
average code length



SOURCE CODING AND CROSS-ENTROPY

For a random source / distribution p, the minimal number of bits to
optimally encode messages from is the entropy H(p).

If the optimal code for a different distribution q(x) is instead used
to encode messages from p(x), expected code length will grow.

Figure: Lp(x), Lq(x) are the optimal code lengths for p(x) and q(x)

© Introduction to Machine Learning – 1 / 4



SOURCE CODING AND CROSS-ENTROPY / 2

Cross-entropy is the average length of communicating an event from
one distribution with the optimal code for another distribution (assume
they have the same domain X as in KL).

H(p∥q) =
∑
x∈X

p(x) log
(

1
q(x)

)
= −

∑
x∈X

p(x) log (q(x))

Figure: Lp(x), Lq(x) are the optimal code lengths for p(x) and q(x)

We directly see: cross-entropy of p with itself is entropy:
H(p∥p) = H(p).
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Credit: Chris Olah

In top, H(p∥q) is greater than H(p) primarily because the blue event that
is very likely under p has a very long codeword in q.

Same, in bottom, for pink when we go from q to p.

Note that H(p∥q) ̸= H(q∥p).
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Figure: Lp(x), Lq(x) are the optimal code lengths for p(x) and q(x)

Let x ′ denote the symbol "dog". The difference in code lengths is:

log

(
1

q(x ′)

)
− log

(
1

p(x ′)

)
= log

p(x ′)

q(x ′)

If p(x ′) > q(x ′), this is positive, if p(x ′) < q(x ′), it is negative.
The expected difference is KL, if we encode symbols from p:

DKL(p∥q) =
∑
x∈X

p(x) · log p(x)
q(x)
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