Introduction to Machine Learning

Information Theory Joint Entropy and Mutual Information II

Learning goals

- Know mutual information as the amount of information of an RV obtained by another
- Know properties of MI

MUTUAL INFORMATION - COROLLARIES

Non-negativity of mutual information: For any two random variables, *X*, *Y*, *I*(*X*; *Y*) ≥ 0, with equality if and only if *X* and *Y* are independent.

Proof: $I(X; Y) = D_{KL}(p(x, y)||p(x)p(y)) \ge 0$, with equality if and only if $p(x, y) = p(x)p(y)$ (i.e., *X* and *Y* are independent).

Conditioning reduces entropy (information can't hurt):

 $H(X|Y) \leq H(X)$,

with equality if and only if *X* and *Y* are independent.

Proof: $0 \leq l(X; Y) = H(X) - H(X|Y)$

Intuitively, the theorem says that knowing another random variable *Y* can only reduce the uncertainty in *X*. Note that this is true only on average.

 \times \times

MUTUAL INFORMATION - COROLLARIES / 2

Independence bound on entropy:

$$
H(X_1,X_2,\ldots,X_n)\leq \sum_{i=1}^n H(X_i)\,
$$

Holds with equality if and only if *Xⁱ* are jointly independent.

Proof: With chain rule and "conditioning reduces entropy"

$$
H(X_1, X_2, \ldots, X_n) = \sum_{i=1}^n H(X_i | X_{i-1}, \ldots, X_1) \leq \sum_{i=1}^n H(X_i)
$$

Equality holds iff X_i is independent of X_{i-1}, \ldots, X_1 for all *i*, so iff all X_i are jointly independent.

 $\overline{\mathbf{x}\ \mathbf{x}}$

MUTUAL INFORMATION PROPERTIES

- MI is a measure of the amount of "dependence" between variables. It is zero if and only if the variables are independent.
- OTOH, if one RV is a deterministic function of the other, MI is maximal, i.e. entropy of the first RV.
- Unlike (Pearson) correlation, MI is not limited to real-valued RVs.
- Can use MI as a **feature filter**, sometimes called information gain.
- Can also be used in CART to select feature for split. Splitting on MI/IG = risk reduction with log-loss.
- MI invariant under injective and continuously differentiable reparametrizations.

 $\epsilon \times$

MUTUAL INFORMATION VS. CORRELATION

- If two RVs are independent, their correlation is 0.
- But: two dependent RVs can have correlation 0 because correlation only measures linear dependence.

- Above: Many examples with strong dependence, nearly 0 correlation and much larger MI.
- MI can be seen as more general measure of dependence than correlation.

X X

MUTUAL INFORMATION - EXAMPLE

Let *X*, *Y* be two correlated Gaussian random variables. $(X, Y) \sim \mathcal{N}(0, K)$ with correlation ρ and covariance matrix *K*:

$$
K = \begin{pmatrix} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{pmatrix}
$$

Then $h(X) = h(Y) = \frac{1}{2} \log ((2\pi e)\sigma^2)$, and $h(X, Y) = \frac{1}{2} \log ((2 \pi e)^2 |K|) = \frac{1}{2}$ $\frac{1}{2}$ log $((2\pi e)^2 \sigma^4(1-\rho^2))$, and thus

$$
I(X; Y) = h(X) + h(Y) - h(X, Y) = -\frac{1}{2}\log(1-\rho^2).
$$

For $\rho = 0$, *X* and *Y* are independent and $I(X; Y) = 0$. For $\rho = \pm 1$, *X* and *Y* are perfectly correlated and *I*(*X*; *Y*) $\rightarrow \infty$. x x