Introduction to Machine Learning

Information Theory
Joint Entropy and Mutual Information Il

Learning goals
@ Know mutual information as the

W @ V x ﬂ »E amount of information of an RV
L d obtained by another

@ Know properties of Ml
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MUTUAL INFORMATION - COROLLARIES

Non-negativity of mutual information: For any two random variables, X, Y,
I(X; Y) > 0, with equality if and only if X and Y are independent.

Proof: I(X;Y) = Du.(p(x,y)|lp(x)p(y)) > 0, with equality if and only if
p(x,y) = p(x)p(y) (i.e., X and Y are independent).

Conditioning reduces entropy (information can’t hurt):

H(X|Y) < H(X),
with equality if and only if X and Y are independent.
Proof: 0 < /(X;Y)= H(X)— H(X|Y)

Intuitively, the theorem says that knowing another random variable Y can only
reduce the uncertainty in X. Note that this is true only on average.
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MUTUAL INFORMATION - COROLLARIES /2

Independence bound on entropy:

H(Xi, Xoy ..., Xn) < zn:H(X,%
Holds with equality if and only if X; are joli:n1tly independent.
Proof: With chain rule and "conditioning reduces entropy”

n n
H (X, X, o, Xa) = D H (X X1, X0) <D H(X)
=1 i=1

Equality holds iff X; is independent of X;_1, ..., X for all /, so iff all X
are jointly independent.
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MUTUAL INFORMATION PROPERTIES

Ml is a measure of the amount of "dependence" between
variables. It is zero if and only if the variables are independent.

OTOH, if one RV is a deterministic function of the other, Ml is
maximal, i.e. entropy of the first RV.

@ Unlike (Pearson) correlation, Ml is not limited to real-valued RVs.

@ Can use Ml as a feature filter, sometimes called information gain.

@ Can also be used in CART to select feature for split.

Splitting on MI/IG = risk reduction with log-loss.

MI invariant under injective and continuously differentiable
reparametrizations.
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MUTUAL INFORMATION VS. CORRELATION

@ If two RVs are independent, their correlation is 0.

@ But: two dependent RVs can have correlation 0 because
correlation only measures linear dependence.

Corr: 0.03, MI: 09 Corr: 0.05, MI: 062 Corr: 0.06, MI: 0.71
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@ Above: Many examples with strong dependence, nearly 0
correlation and much larger MI.

@ MI can be seen as more general measure of dependence than
correlation.
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MUTUAL INFORMATION - EXAMPLE

Let X, Y be two correlated Gaussian random variables.
(X,Y) ~ N(0, K) with correlation p and covariance matrix K:

o2 p02
<= %)
Then h(X) = h(Y) = 1 log ((2me)a?), and
h(X,Y) = }log ((2me)?|K|) = 1 log ((2me)?0*(1 — p?)), and thus

I(X;Y) = h(X)+h(Y)—h(X,Y) = —% log(1 — p?).

For p =0, X and Y are independent and /(X; Y) = 0.
For p = +1, X and Y are perfectly correlated and /(X; Y) — oc.
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