
Introduction to Machine Learning

Information Theory
Joint Entropy and Mutual Information II

Learning goals
Know mutual information as the
amount of information of an RV
obtained by another

Know properties of MI



MUTUAL INFORMATION - COROLLARIES
Non-negativity of mutual information: For any two random variables, X , Y ,
I(X ;Y ) ≥ 0, with equality if and only if X and Y are independent.

Proof: I(X ;Y ) = DKL(p(x , y)∥p(x)p(y)) ≥ 0, with equality if and only if
p(x , y) = p(x)p(y) (i.e., X and Y are independent).

Conditioning reduces entropy (information can’t hurt):

H(X |Y ) ≤ H(X),

with equality if and only if X and Y are independent.

Proof: 0 ≤ I(X ;Y ) = H(X)− H(X |Y )
Intuitively, the theorem says that knowing another random variable Y can only
reduce the uncertainty in X . Note that this is true only on average.
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MUTUAL INFORMATION - COROLLARIES / 2

Independence bound on entropy:

H (X1,X2, . . . ,Xn) ≤
n∑

i=1

H (Xi) ,

Holds with equality if and only if Xi are jointly independent.

Proof: With chain rule and "conditioning reduces entropy"

H (X1,X2, . . . ,Xn) =
n∑

i=1

H (Xi |Xi−1, . . . ,X1) ≤
n∑

i=1

H (Xi)

Equality holds iff Xi is independent of Xi−1, . . . ,X1 for all i , so iff all Xi

are jointly independent.
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MUTUAL INFORMATION PROPERTIES

MI is a measure of the amount of "dependence" between
variables. It is zero if and only if the variables are independent.

OTOH, if one RV is a deterministic function of the other, MI is
maximal, i.e. entropy of the first RV.

Unlike (Pearson) correlation, MI is not limited to real-valued RVs.

Can use MI as a feature filter, sometimes called information gain.

Can also be used in CART to select feature for split.
Splitting on MI/IG = risk reduction with log-loss.

MI invariant under injective and continuously differentiable
reparametrizations.
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MUTUAL INFORMATION VS. CORRELATION

If two RVs are independent, their correlation is 0.

But: two dependent RVs can have correlation 0 because
correlation only measures linear dependence.

Above: Many examples with strong dependence, nearly 0
correlation and much larger MI.

MI can be seen as more general measure of dependence than
correlation.
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MUTUAL INFORMATION - EXAMPLE

Let X ,Y be two correlated Gaussian random variables.
(X ,Y ) ∼ N (0,K ) with correlation ρ and covariance matrix K :

K =

(
σ2 ρσ2

ρσ2 σ2

)
Then h(X) = h(Y ) = 1

2 log
(
(2πe)σ2

)
, and

h(X ,Y ) = 1
2 log

(
(2πe)2|K |

)
= 1

2 log
(
(2πe)2σ4(1 − ρ2)

)
, and thus

I(X ;Y ) = h(X) + h(Y )− h(X ,Y ) = −1
2
log(1 − ρ2).

For ρ = 0, X and Y are independent and I(X ;Y ) = 0.
For ρ = ±1, X and Y are perfectly correlated and I(X ;Y ) → ∞.
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