Introduction to Machine Learning

Information Theory
Joint Entropy and Mutual Information |
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Learning goals
@ Know the joint entropy

Entropy H(p)=1.5

-.I.- @ Know conditional entropy as
remaining uncertainty
Entropy H(p)=1.2 . .
I @ Know mutual information as the
e e amount of information of an RV
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obtained by another
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JOINT ENTROPY

@ Recap: The joint entropy of two discrete RVs X and Y with joint
pmf p(x, y) is:

H(X7 Y) - = Z Zp(xay) |Og(p(X,y)),

xeX yey
which can also be expressed as
@ For continuous RVs X and Y with joint density p(x, y), the
differential joint entropy is:
WX Y) = = [ p(xy)logplx.y)dcy
XxY

For the rest of the section we will stick to the discrete case. Pretty much everything we
show and discuss works in a completely analogous manner for the continuous case - if
you change sums to integrals.

Introduction to Machine Learning — 1/9

X X



CONDITIONAL ENTROPY

@ The conditional entropy H(Y|X) quantifies the uncertainty of Y
that remains if the outcome of X is given.

@ H(Y|X) is defined as the expected value of the entropies of the
conditional distributions, averaged over the conditioning RV.
e If (X, Y) ~ p(x,y), the conditional entropy H(Y|X) is defined as
H(YIX) = Ex[H(YIX = x)] = > p(x)H(Y|X = x)
xeXx

==Y p(x)>_ p(ylx)logp(ylx)

XEX yey

==> "> p(x,y)logp(y|x)

XEX yeY
= —E[logp(Y|X)].
@ For the continuous case with density f we have

h(YIX) = — / f(x, y) log f(x|y )dxdy.
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CHAIN RULE FOR ENTROPY

The chain rule for entropy is analogous to the chain rule for probability
and derives directly from it.

H(X, Y) = H(X) + H(Y|X)

Proof: H(X,Y) ZZp x,y)logp(x,y)

xXeEX yey
=—> > px.y)logp(x)p(ylx)
XEX yeY
=33 plx,y)logp(x) = > 3" p(x.y)log p(ylx)
xeX yey xXeX yey
= Z p(x) log p(x) — Z ZP(XJ’) log p(yx)
XEX XEX ye)Y

= H(X) + H(Y|X)
n-variable version:

n
H(Xi, X, Xn) = > H(Xi|Xior, ., ).
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JOINT AND CONDITIONAL ENTROPY

The following relations hold:

H(X, X) = H(X)
H(X|X) =0
H((X, Y)|Z) = H(X|Z) + H(Y|(X, Z))
Which can all be trivially derived from the previous considerations.
Furthermore, if H(X|Y) = 0 and X, Y are discrete RV, then X is a

function of Y, so for all y with p(y) > 0, there is only one x with
p(x,y) > 0. Proof is not hard, but also not completely trivial.
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MUTUAL INFORMATION

@ The MI describes the amount of info about one RV obtained
through another RV or how different their joint distribution is from
pure independence.

@ Consider two RVs X and Y with a joint pmf p(x, y) and marginal

pmfs p(x) and p(y). The MI /(X; Y) is the Kullback-Leibler
Divergence between the joint distribution and the product

distribution p(x)p(y):

(06) = 32 3 oty los 50

xeX yey
= Die(p(x, y)llp(x)p(y))

_ o pX, ¥)
= Ep(x,y) |:| g p(X)P( Y):| .

@ For two continuous random variables with joint density f(x, y):

I(X; Y) :/ f(x, ) log f(() (yy)) dxay.
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MUTUAL INFORMATION

We can rewrite the definition of mutual information /(X; Y) as

I(X; Y) = p(x.y) log Poy)

" p(x)p(y)
B o PX1Y)
= Xz’y:p(xay)l &0
= —Zp x,y)log p(x +ZP x,y)logp(x|y)
X,y X,y
—Zp ) log p(x ( ZPXY |0gP(X|Y)>
X,y
= H(X) — H(X]Y).

So, I(X; Y) is reduction in uncertainty of X due to knowledge of Y.
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MUTUAL INFORMATION

The following relations hold:

I(X;Y) = H(X) — H(X]|Y)

I(X;Y) = H(Y) = H(Y|X)

I(X;Y) < min{H(X),H(Y)}if X, Y are discrete RVs
I(X;Y)=H(X)+ H(Y)—H(X,Y)

I(X;Y) =1(Y; X)

I(X: X) = H(X)

All of the above are trivial to prove.
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MUTUAL INFORMATION - EXAMPLE

Let X, Y have the following joint distribution:

Xi | Xo | X3 | Xy
i i i i

Yi | g |15 | 3 | 3
Yo | L T L1
2 | 16 8 32 | 32
vl L L1 L1
3 6 | 16 | 16 | 16
Ya| 7 0 0 0

) and marginal distribution of Y is
and H(Y) = 2 bits.

Marginal distribution of X is (3,

11
458
(%% 3 3)> and hence H(X) = 7 bit

1
8
47 47 4> S
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MUTUAL INFORMATION - EXAMPLE /2

The conditional entropy H(X|Y) is given by:
4
HOXIY) = 37 p(Y = DH(X|Y = i)
=

1111 1 1111
Y A0 o) +7H 1'n’o’o
> 4 <4288>

8

"+ 1 h(1,0,0,0)
74 4 P B |
+

Similarly, H(Y|X) = 1 bits and H(X, Y) = 2/ bits.
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