
Introduction to Machine Learning

Information Theory
Information Theory for Machine Learning

Learning goals
Minimizing KL =
maximizing log-likelihood

Minimizing KL =
minimizing cross-entropy

Minimizing CE between modeled and
observed probabilities =
log-loss minimization



KL VS MAXIMUM LIKELIHOOD

Minimizing KL between the true distribution p(x) and approximating
model q(x |θ) is equivalent to maximizing the log-likelihood.

DKL(p∥qθ) = EX∼p

[
log

p(x)
q(x |θ)

]
= EX∼p log p(x)− EX∼p log q(x |θ)

as first term above does not depend on θ. Therefore,

argmin
θ

DKL(p∥qθ) = argmin
θ

−EX∼p log q(x |θ)

= argmax
θ

EX∼p log q(x |θ)

For a finite dataset of n samples from p, this is approximated as

argmax
θ

EX∼p log q(x |θ) ≈ argmax
θ

1
n

n∑
i=1

log q(x(i)|θ) .

This also directly implies an equivalence to risk minimization!
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KL VS CROSS-ENTROPY

From this here we can see much more:

argmin
θ

DKL(p∥qθ) = argmin
θ

−EX∼p log q(x |θ) = argmin
θ

H(p∥qθ)

So minimizing KL is the same as minimizing CE, is the same as
maximum likelihood!

We could now motivate CE as the "relevant" term that you have to
minimize when you minimize KL - after you drop Ep log p(x),
which is simply the neg. entropy H(p)!

Or we could say: CE between p and q is simply the expected
negative log-likelihood of q, when our data comes from p!
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KL VS CROSS-ENTROPY EXAMPLE

Let p(x) = N(0, 1) and q(x) = LP(0, σ) and consider again

argmin
θ

DKL(p∥qθ) = argmin
θ

−EX∼p log q(x |θ) = argmin
θ

H(p∥qθ)
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CROSS-ENTROPY VS. LOG-LOSS

Consider a multi-class classification task with dataset
D =

((
x(1), y (1)

)
, . . . ,

(
x(n), y (n)

))
.

For g classes, each y (i) can be one-hot-encoded as a vector d(i)

of length g. d(i) can be interpreted as a categorical distribution
which puts all its probability mass on the true label y (i) of x(i).

π(x(i)|θ) is the probability output vector of the model, and also a
categorical distribution over the classes.
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CROSS-ENTROPY VS. LOG-LOSS / 2

To train the model, we minimize KL between d(i) and π(x(i)|θ) :

argmin
θ

n∑
i=1

DKL(d(i)∥π(x(i)|θ)) = argmin
θ

n∑
i=1

H(d(i)∥π(x(i)|θ))

We see that this is equivalent to log-loss risk minimization!

R =
n∑

i=1

H(d (i)∥πk(x
(i)|θ))

=
n∑

i=1

(
−
∑

k

d (i)
k log πk(x

(i)|θ)

)

=
n∑

i=1

(
−

g∑
k=1

[y (i) = k ] log πk(x
(i)|θ)

)
︸ ︷︷ ︸

log loss

=
n∑

i=1

(− log πy(i)(x
(i)|θ))
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CROSS-ENTROPY VS. BERNOULLI LOSS

For completeness sake:
Let us use the Bernoulli loss for binary classification:

L(y , π(x)) = −y log(π(x))− (1 − y) log(1 − π(x))

If p represents a Ber(y) distribution (so deterministic, where the true
label receives probability mass 1) and we also interpret π(x) as a
Bernoulli distribution Ber(π(x)), the Bernoulli loss L(y , π(x)) is the
cross-entropy H(p∥π(x)).
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ENTROPY AS PREDICTION LOSS

Assume log-loss for a situation where you only model with a constant
probability vector π. We know the optimal model under that loss:

πk =
nk

n
=

n∑
i=1

[y (i) = k ]

n

What is the (average) risk of that minimal constant model?

R =
1
n

n∑
i=1

(
−

g∑
k=1

[y (i) = k ] log πk

)
= −1

n

g∑
k=1

n∑
i=1

[y (i) = k ] log πk

= −
g∑

k=1

nk

n
log πk = −

g∑
k=1

πk log πk = H(π)

So entropy is the (average) risk of the optimal "observed class
frequency" model under log-loss!
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