Introduction to Machine Learning

Information Theory
Information Theory for Machine Learning

Learning goals
@ Minimizing KL =
maximizing log-likelihood

d® @ Minimizing KL =
minimizing cross-entropy

k 1 2 3 4 s @ Minimizing CE between modeled and
observed probabilities =
log-loss minimization
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KL VS MAXIMUM LIKELIHOOD

Minimizing KL between the true distribution p(x) and approximating
model q(x|@) is equivalent to maximizing the log-likelihood.

p(x) }
q(x|0)
= Explogp(x) — Explog g(x|0)

Dia(p]196) = Fxwp [log

as first term above does not depend on 8. Therefore,
arggmin Dki(pllge) = arggmin —Ex~plogq(x|0)

= arg max Ex., log q(x|0)
0
For a finite dataset of n samples from p, this is approximated as
1< :
arg maxExplog q(x|0) ~ arg max — Z log Q(X(/) 16) .
6 o N5

This also directly implies an equivalence to risk minimization!
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KL VS CROSS-ENTROPY

From this here we can see much more:

argemin Dki(pllge) = arggmin —Ex~plogq(x|6) = argomin H(pl|qe)

@ So minimizing KL is the same as minimizing CE, is the same as
maximum likelihood!

@ We could now motivate CE as the "relevant” term that you have to
minimize when you minimize KL - after you drop E, log p(x),
which is simply the neg. entropy H(p)!

@ Or we could say: CE between p and q is simply the expected
negative log-likelihood of g, when our data comes from p!
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KL VS CROSS-ENTROPY EXAMPLE
Let p(x) = N(0, 1) and g(x) = LP(0, c) and consider again

argemin Dki(pllge) = arggmin —Ex~plogq(x|6) = argomin H(pl|qe)

KL Divergence
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CROSS-ENTROPY VS. LOG-LOSS

@ Consider a multi-class classification task with dataset
D= ((x“),y“)) N (x(n)jy(n)))_

@ For g classes, each y(’) can be one-hot-encoded as a vector d()
of length g. d() can be interpreted as a categorical distribution
which puts all its probability mass on the true label y(’) of x(.

° w(x(’)\e) is the probability output vector of the model, and also a
categorical distribution over the classes.

j d“’) m(x®)
o 7 [l
k 1 2 3 4 5 k
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CROSS-ENTROPY VS. LOG-LOSS /2

To train the model, we minimize KL between d() and 7(x()|8) :

n n
arg min Z D (d || (x()|0)) = arg min Z H(dD |7 (x()|9))
0 0

i=1 i=1

We see that this is equivalent to log-loss risk minimization!

R="> H(d"|m(x"|0))
i=1

n

= Z (— Z d,Ei) log ﬂ'k(X(i)|0))

i=1

=3 (— S =4 Iogm(x“)w))

i=1 k=1

log loss

=> (~logm,;(x"]0))
i=1
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CROSS-ENTROPY VS. BERNOULLI LOSS

For completeness sake:
Let us use the Bernoulli loss for binary classification:

L(y,m(x)) = —y log(m(x)) — (1 — y) log(1 — 7(x))

If p represents a Ber(y) distribution (so deterministic, where the true
label receives probability mass 1) and we also interpret 7w(x) as a
Bernoulli distribution Ber(7(x)), the Bernoulli loss L(y, m(x)) is the
cross-entropy H(p||m(x)).
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ENTROPY AS PREDICTION LOSS

Assume log-loss for a situation where you only model with a constant
probability vector w. We know the optimal model under that loss:

n .
Sy =K
Nk =
7'['k = —_—
n n

What is the (average) risk of that minimal constant model?

n g

g n
135 (S50 o) 13S0 e

=1 k=1 k=1 i=1
I e g
= — E — log g = — g Tk log mxk = H(m)
n
k=1 k=1

So entropy is the (average) risk of the optimal "observed class
frequency" model under log-loss!
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