
Introduction to Machine Learning

Information Theory
Kullback-Leibler Divergence

Learning goals
Know the KL divergence as distance
between distributions

Understand KL as expected
log-difference

Understand how KL can be used as
loss

Understand that KL is equivalent to
the expected likelihood ratio



KULLBACK-LEIBLER DIVERGENCE

We now want to establish a measure of distance between (discrete or
continuous) distributions with the same support for X ∼ p(X):

DKL(p∥q) = EX∼p

[
log

p(X)

q(X)

]
=

∑
x∈X

p(x) · log p(x)
q(x)

,

or:

DKL(p∥q) = EX∼p

[
log

p(X)

q(X)

]
=

∫
x∈X

p(x) · log p(x)
q(x)

dx .

In the above definition, we use the conventions that 0 log(0/0) = 0,
0 log(0/q) = 0 and p log(p/0) = ∞ (based on continuity arguments
where p → 0). Thus, if there is any realization x ∈ X such that
p(x) > 0 and q(x) = 0, then DKL(p∥q) = ∞.
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KULLBACK-LEIBLER DIVERGENCE / 2

DKL(p∥q) = EX∼p

[
log

p(X)

q(X)

]
What is the intuition behind this formula?

We will soon see that KL has quite some value in measuring
“differences” but is not a true distance.

We already see that the formula is not symmetric and it often
makes sense to think of p as the first or original form of the data,
and q as something that we want to measure the quality of with
reference to p.
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KL-DIVERGENCE EXAMPLE

KL divergence between p(x) = N(0, 1) and q(x) = LP(0, 1.5) given by

DKL(p∥q) =
∫

x∈X
p(x) · log p(x)

q(x)
.
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KL-DIVERGENCE EXAMPLE

KL divergence between p(x) = LP(0, 1.5) and q(x) = N(0, 1) is
different since KL not symmetric
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KL-DIVERGENCE EXAMPLE

KL divergence of p(x) = N(0, 1) and q(x) = LP(0, σ) for varying σ
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INFORMATION INEQUALITY

DKL(p∥q) ≥ 0 holds always true for any pair of distributions, and holds
with equality if and only if p = q.

We use Jensen’s inequality. Let A be the support of p:

−DKL(p∥q) = −
∑
x∈A

p(x) log
p(x)
q(x)

=
∑
x∈A

p(x) log
q(x)
p(x)

≤ log
∑
x∈A

p(x)
q(x)
p(x)

≤ log
∑
x∈X

q(x) = log(1) = 0

As log is strictly concave, Jensen also tells us that equality can only
happen if q(x)/p(x) is constant everywhere. That implies p = q.
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KL AS LOG-DIFFERENCE

Suppose that data is being generated from an unknown distribution
p(x) and we model p(x) using an approximating distribution q(x).

First, we could simply see KL as the expected log-difference between
p(x) and q(x):

DKL(p∥q) = EX∼p[log(p(X))− log(q(X))].

This is why we integrate out with respect to the data distribution p. A
“good” approximation q(x) should minimize the difference to p(x).

x ∼ p(x)
x

log p(x)− log q(x)
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KL AS LOG-DIFFERENCE / 2

Let p(x) = N(0, 1) and q(x) = LP(0, 3). Observe

DKL(p∥q) = EX∼p[log(p(X))− log(q(X))]

= EX∼p[log(p(X))]− EX∼p[log(q(X))].

© Introduction to Machine Learning – 8 / 10



KL IN FITTING

In machine learning, KL divergence is commonly used to quantify how
different one distribution is from another.
Because KL quantifies the difference between distributions, it can be
used as a loss function between distributions.

In our example, we investigated the KL between p = N(0, 1) and
q = LP(0, σ). Now, we identify an optimal σ which minimizes the KL.
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KL AS LIKELIHOOD RATIO

Let us assume we have some data and want to figure out whether
p(x) or q(x) matches it better.

How do we usually do that in stats? Likelihood ratio!

LR =
∏

i

p(x(i))
q(x(i))

LLR =
∑

i

log
p(x(i))
q(x(i))

If for x(i) we have p(x(i))/q(x(i)) > 1, then p seems better, for
p(x(i))/q(x(i)) < 1 q seems better.

Now assume that the data is generated by p. Can also ask:

"How to quantify how much better does p fit than q, on average?"

Ep

[
log

p(X)

q(X)

]
That expected LLR is really KL!
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