Introduction to Machine Learning

Information Theory Kullback-Leibler Divergence

X \times \times

Learning goals

- Know the KL divergence as distance between distributions
- Understand KL as expected log-difference
- \bullet Understand how KL can be used as loss
- Understand that KL is equivalent to the expected likelihood ratio

KULLBACK-LEIBLER DIVERGENCE

We now want to establish a measure of distance between (discrete or continuous) distributions with the same support for $X \sim p(X)$:

$$
D_{\mathsf{KL}}(p\|q) = \mathbb{E}_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right] = \sum_{x \in \mathcal{X}} p(x) \cdot \log \frac{p(x)}{q(x)},
$$

or:

$$
D_{\mathsf{KL}}(p \| q) = \mathbb{E}_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right] = \int_{x \in \mathcal{X}} p(x) \cdot \log \frac{p(x)}{q(x)} dx.
$$

In the above definition, we use the conventions that $0 \log(0/0) = 0$, $0 \log(0/q) = 0$ and $p \log(p/0) = \infty$ (based on continuity arguments where $p \to 0$). Thus, if there is any realization $x \in \mathcal{X}$ such that $p(x) > 0$ and $q(x) = 0$, then $D_{Kl}(p||q) = \infty$.

KULLBACK-LEIBLER DIVERGENCE / 2

$$
D_{\mathsf{KL}}(\rho\|q) = \mathbb{E}_{X \sim \rho} \left[\log \frac{\rho(X)}{q(X)} \right]
$$

- What is the intuition behind this formula?
- We will soon see that KL has quite some value in measuring "differences" but is not a true distance.
- We already see that the formula is not symmetric and it often makes sense to think of *p* as the first or original form of the data, and *q* as something that we want to measure the quality of with reference to *p*.

 \overline{z}

KL-DIVERGENCE EXAMPLE

KL divergence between $p(x) = N(0, 1)$ and $q(x) = LP(0, 1.5)$ given by

$$
D_{\mathsf{KL}}(p\|q) = \int_{x \in \mathcal{X}} p(x) \cdot \log \frac{p(x)}{q(x)}.
$$

X X X

KL-DIVERGENCE EXAMPLE

KL divergence between $p(x) = LP(0, 1.5)$ and $q(x) = N(0, 1)$ is different since KL not symmetric

X X X

KL-DIVERGENCE EXAMPLE

KL divergence of $p(x) = N(0, 1)$ and $q(x) = LP(0, \sigma)$ for varying σ

INFORMATION INEQUALITY

 $D_{\mathcal{K}}(p||q) \geq 0$ holds always true for any pair of distributions, and holds with equality if and only if $p = q$.

We use Jensen's inequality. Let *A* be the support of *p*:

$$
-D_{KL}(p||q) = -\sum_{x \in A} p(x) \log \frac{p(x)}{q(x)}
$$

$$
= \sum_{x \in A} p(x) \log \frac{q(x)}{p(x)}
$$

$$
\leq \log \sum_{x \in A} p(x) \frac{q(x)}{p(x)}
$$

$$
\leq \log \sum_{x \in \mathcal{X}} q(x) = \log(1) = 0
$$

 \times \times

As log is strictly concave, Jensen also tells us that equality can only happen if $q(x)/p(x)$ is constant everywhere. That implies $p = q$.

KL AS LOG-DIFFERENCE

Suppose that data is being generated from an unknown distribution $p(x)$ and we model $p(x)$ using an approximating distribution $q(x)$.

First, we could simply see KL as the expected log-difference between $p(x)$ and $q(x)$:

$$
D_{\text{KL}}(p||q) = \mathbb{E}_{X \sim p}[\log(p(X)) - \log(q(X))].
$$

This is why we integrate out with respect to the data distribution *p*. A "good" approximation $q(x)$ should minimize the difference to $p(x)$.

$$
x \sim p(x)
$$
 \downarrow \searrow $\log p(x) - \log q(x)$

 $\overline{\mathbf{x}} \mathbf{x}$

KL AS LOG-DIFFERENCE / 2

Let $p(x) = N(0, 1)$ and $q(x) = LP(0, 3)$. Observe

$$
D_{\mathsf{KL}}(p||q) = \mathbb{E}_{X \sim p}[\log(p(X)) - \log(q(X))]
$$

=
$$
\mathbb{E}_{X \sim p}[\log(p(X))] - \mathbb{E}_{X \sim p}[\log(q(X))].
$$

KL IN FITTING

In machine learning, KL divergence is commonly used to quantify how different one distribution is from another.

Because KL quantifies the difference between distributions, it can be used as a loss function between distributions.

In our example, we investigated the KL between $p = N(0, 1)$ and $q = LP(0, \sigma)$. Now, we identify an optimal σ which minimizes the KL.

KL Divergence depending on Sigma

 $\overline{\mathbf{C}}$

KL AS LIKELIHOOD RATIO

- Let us assume we have some data and want to figure out whether $p(x)$ or $q(x)$ matches it better.
- How do we usually do that in stats? Likelihood ratio!

$$
LR = \prod_{i} \frac{p(\mathbf{x}^{(i)})}{q(\mathbf{x}^{(i)})} \qquad LLR = \sum_{i} \log \frac{p(\mathbf{x}^{(i)})}{q(\mathbf{x}^{(i)})}
$$

If for $\mathbf{x}^{(i)}$ we have $p(\mathbf{x}^{(i)})/q(\mathbf{x}^{(i)})>1$, then p seems better, for $p(\mathbf{x}^{(i)})/q(\mathbf{x}^{(i)}) < 1$ q seems better.

- Now assume that the data is generated by *p*. Can also ask:
- "How to quantify how much better does *p* fit than *q*, on average?"

$$
\mathbb{E}_{\rho}\left[\log \frac{\rho(X)}{q(X)}\right]
$$

That expected LLR is really KL!

 $\overline{\mathbf{X}}$