Introduction to Machine Learning Information Theory KL for ML

Learning goals

- Understand why measuring distribution similarity is important in ML
- Understand the advantages of forward and reverse KL

MEASURING DISTRIBUTION SIMILARITY IN ML

 Information theory provides tools (e.g., divergence measures) to quantify the similarity between probability distributions

- The most prominent divergence measure is the KL divergence
- In ML, measuring (and maximizing) the similarity between probability distributions is a ubiquitous concept, which will be shown in the following.

MEASURING DISTRIBUTION SIMILARITY IN ML/2

Probabilistic model fitting

Assume our learner is probabilistic, i.e., we model $p(y|\mathbf{x})$ (for example, logistic regression, Gaussian process, ...).

We want to minimize the difference between $p(y|\mathbf{x})$ and the conditional data generating process $\mathbb{P}_{y|\mathbf{x}}$ based on the data stemming from $\mathbb{P}_{v,\mathbf{x}}$.

Many losses can be derived this way. (e.g., cross-entropy loss)

MEASURING DISTRIBUTION SIMILARITY IN ML /3

• Feature selection In feature selection, we want to choose features the target strongly depends on.

We can measure dependency by measuring the similarity between $p(\mathbf{x}, y)$ and $p(\mathbf{x}) \cdot p(y)$.

We will later see that measuring this similarity with KL leads to the concept of mutual information.

MEASURING DISTRIBUTION SIMILARITY IN ML/4

 Variational inference (VI) By Bayes' theorem it holds that the posterior density

$$p(\theta|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\theta)p(\theta)}{\int p(\mathbf{y}|\mathbf{X},\theta)p(\theta)d\theta}.$$

However, computing the normalization constant $c = \int p(\mathbf{y}|\mathbf{X}, \theta)p(\theta)d\theta$ analytically is usually intractable.

In VI, we want to fit a density q_{ϕ} with parameters ϕ to $p(\theta|\mathbf{X},\mathbf{y})$.

KL DIVERGENCE

Divergences can be used to measure the similarity of distributions.

For distributions p, q they are defined such that

- **2** D(p,q) = 0 iff p = q.
- ⇒ divergences can be (and often are) non-symmetrical.

- $D_{KL}(p||q_{\phi})$ forward KL,
- $D_{KL}(q_{\phi}||p)$ reverse KL.

In the following, we highlight some properties of the KL that make it attractive from an ML perspective.

KL DIVERGENCE / 2

• Forward KL for probabilistic model fitting
We have samples from the DGP $p(y, \mathbf{x})$ when we fit our ML model.

If we have a probabilistic ML model q_ϕ the expected forward KL

$$\mathbb{E}_{\mathbf{x} \sim
ho_{\mathbf{x}}} \mathcal{D}_{\mathsf{KL}}(
ho(\cdot|\mathbf{x}) \| q_{\phi}(\cdot|\mathbf{x})) = \mathbb{E}_{\mathbf{x} \sim
ho_{\mathbf{x}}} \mathbb{E}_{y \sim
ho_{y|\mathbf{x}}} \log \left(rac{
ho(y|\mathbf{x})}{q_{\phi}(y|\mathbf{x})}
ight).$$

We can directly minimize this objective since

$$\begin{split} \nabla_{\phi} \mathbb{E}_{\mathbf{x} \sim \rho_{\mathbf{x}}} D_{\mathit{KL}}(\rho(\cdot|\mathbf{x}) \| q_{\phi}(\cdot|\mathbf{x})) &= \mathbb{E}_{\mathbf{x} \sim \rho_{\mathbf{x}}} \mathbb{E}_{y \sim \rho_{y|\mathbf{x}}} \nabla_{\phi} \log \left(\rho(y|\mathbf{x}) \right) \\ &- \mathbb{E}_{\mathbf{x} \sim \rho_{\mathbf{x}}} \mathbb{E}_{y \sim \rho_{y|\mathbf{x}}} \nabla_{\phi} \log \left(q_{\phi}(y|\mathbf{x}) \right) \\ &= - \nabla_{\phi} \mathbb{E}_{\mathbf{x} \sim \rho_{\mathbf{x}}} \mathbb{E}_{y \sim \rho_{y|\mathbf{x}}} \log \left(q_{\phi}(y|\mathbf{x}) \right) \end{split}$$

 \Rightarrow We can estimate the gradient of the expected forward KL without bias, although we can not evaluate $p(y|\mathbf{x})$ in general.

KL DIVERGENCE / 3

Reverse KL for VI

0

Here, we know our target density $p(\theta|\mathbf{X},\mathbf{y})$ only up to the normalization constant, and we do not have samples from it.

We can directly apply the reverse KL since for any $c \in \mathbb{R}_+$

$$egin{aligned}
abla_{\phi} D_{ extsf{KL}}(q_{\phi} \|
ho) &=
abla_{\phi} \mathbb{E}_{ heta \sim q_{\phi}} \log \left(rac{q_{\phi}(heta)}{
ho(heta)}
ight) \ &=
abla_{\phi} \mathbb{E}_{ heta \sim q_{\phi}} \log \left(rac{q_{\phi}(heta)}{
ho(heta)}
ight) -
abla_{\phi} \mathbb{E}_{ heta \sim q_{\phi}} \log c \ &=
abla_{\phi} \mathbb{E}_{ heta \sim q_{\phi}} \log \left(rac{q_{\phi}(heta)}{c \cdot
ho(heta)}
ight). \end{aligned}$$

 \Rightarrow We can estimate the gradient of the reverse KL without bias (even if we only have an unnormalized target distribution)

KL DIVERGENCE / 4

The asymmetry of the KL has the following implications

- Forward KL $D_{\mathit{KL}}(p\|q_{\phi}) = \mathbb{E}_{\mathbf{x} \sim p} \log \left(\frac{p(\mathbf{x})}{q_{\phi}(\mathbf{x})}\right)$ is mass-covering since $p(\mathbf{x}) \log \left(\frac{p(\mathbf{x})}{q_{\phi}(\mathbf{x})}\right) \approx 0$ if $p(\mathbf{x}) \approx 0$ and $q_{\phi}(\mathbf{x}) \gg p(\mathbf{x})$.
- Reverse KL $D_{\mathit{KL}}(q_{\phi}\|p) = \mathbb{E}_{\mathbf{x} \sim q_{\phi}} \log \left(\frac{q_{\phi}(\mathbf{x})}{p(\mathbf{x})} \right)$ is mode-seeking (zero-avoiding) since $q_{\phi}(\mathbf{x}) \log \left(\frac{q_{\phi}(\mathbf{x})}{p(\mathbf{x})} \right) \gg 0$ if $p(\mathbf{x}) \approx 0$ and $q_{\phi}(\mathbf{x}) > 0$

Figure: Optimal q_{ϕ} when q_{ϕ} is restricted to be Gaussian.

