
Introduction to Machine Learning

Information Theory
KL for ML

Learning goals
Understand why measuring
distribution similarity is important in
ML

Understand the advantages of
forward and reverse KL



MEASURING DISTRIBUTION SIMILARITY IN ML

Information theory provides tools (e.g., divergence measures) to
quantify the similarity between probability distributions

The most prominent divergence measure is the KL divergence

In ML, measuring (and maximizing) the similarity between
probability distributions is a ubiquitous concept, which will be
shown in the following.
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MEASURING DISTRIBUTION SIMILARITY IN ML / 2

Probabilistic model fitting
Assume our learner is probabilistic, i.e., we model p(y |x) (for
example, logistic regression, Gaussian process, ...).
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We want to minimize the difference between p(y |x) and the
conditional data generating process Py |x based on the data
stemming from Py ,x.

Many losses can be derived this way. (e.g., cross-entropy loss)
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MEASURING DISTRIBUTION SIMILARITY IN ML / 3

Feature selection In feature selection, we want to choose
features the target strongly depends on.

We can measure dependency by measuring the similarity between
p(x, y) and p(x) · p(y).

We will later see that measuring this similarity with KL leads to the
concept of mutual information.
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MEASURING DISTRIBUTION SIMILARITY IN ML / 4

Variational inference (VI) By Bayes’ theorem it holds that the
posterior density

p(θ|X, y) = p(y|X,θ)p(θ)∫
p(y|X,θ)p(θ)dθ

.

However, computing the normaliziation constant
c =

∫
p(y|X,θ)p(θ)dθ analytically is usually intractable.

In VI, we want to fit a density qϕ with parameters ϕ to p(θ|X, y).
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KL DIVERGENCE

Divergences can be used to measure the similarity of distributions.

For distributions p, q they are defined such that
1 D(p, q) ≥ 0,
2 D(p, q) = 0 iff p = q.

⇒ divergences can be (and often are) non-symmetrical.

If the same measure dominates the distributions p, q, we can use KL.
For a target distribution p and parametrized distribution qϕ, we call

DKL(p∥qϕ) forward KL,

DKL(qϕ∥p) reverse KL.

In the following, we highlight some properties of the KL that make it
attractive from an ML perspective.
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KL DIVERGENCE / 2

Forward KL for probabilistic model fitting
We have samples from the DGP p(y , x) when we fit our ML model.

If we have a probabilistic ML model qϕ the expected forward KL

Ex∼pxDKL(p(·|x)∥qϕ(·|x)) = Ex∼pxEy∼py|x log

(
p(y |x)

qϕ(y |x)

)
.

We can directly minimize this objective since

∇ϕEx∼pxDKL(p(·|x)∥qϕ(·|x)) = Ex∼pxEy∼py|x∇ϕ log (p(y |x))
− Ex∼pxEy∼py|x∇ϕ log (qϕ(y |x))
= −∇ϕEx∼pxEy∼py|x log (qϕ(y |x))

⇒ We can estimate the gradient of the expected forward KL
without bias, although we can not evaluate p(y |x) in general.
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KL DIVERGENCE / 3

Reverse KL for VI
Here, we know our target density p(θ|X, y) only up to the
normalization constant, and we do not have samples from it.

We can directly apply the reverse KL since for any c ∈ R+

∇ϕDKL(qϕ∥p) = ∇ϕEθ∼qϕ log

(
qϕ(θ)
p(θ)

)
= ∇ϕEθ∼qϕ log

(
qϕ(θ)
p(θ)

)
−∇ϕEθ∼qϕ log c︸ ︷︷ ︸

=0

= ∇ϕEθ∼qϕ log

(
qϕ(θ)

c · p(θ)

)
.

⇒ We can estimate the gradient of the reverse KL without bias
(even if we only have an unnormalized target distribution)
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KL DIVERGENCE / 4

The asymmetry of the KL has the following implications

Forward KL DKL(p∥qϕ) = Ex∼p log
(

p(x)
qϕ(x)

)
is mass-covering

since p(x) log
(

p(x)
qϕ(x)

)
≈ 0 if p(x) ≈ 0 and qϕ(x) ̸≫ p(x).

Reverse KL DKL(qϕ∥p) = Ex∼qϕ log
(

qϕ(x)
p(x)

)
is mode-seeking

(zero-avoiding) since qϕ(x) log
(

qϕ(x)
p(x)

)
≫ 0 if p(x) ≈ 0 and

qϕ(x) > 0

Figure: Optimal qϕ when qϕ is restricted to be Gaussian.
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