Introduction to Machine Learning

Information Theory
KL for ML

Learning goals

o @ Understand why measuring
| distribution similarity is important in
ML

o0 = . : - | @ Understand the advantages of

forward and reverse KL
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MEASURING DISTRIBUTION SIMILARITY IN ML

@ Information theory provides tools (e.g., divergence measures) to
quantify the similarity between probability distributions
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@ The most prominent divergence measure is the KL divergence

@ In ML, measuring (and maximizing) the similarity between
probability distributions is a ubiquitous concept, which will be
shown in the following.
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MEASURING DISTRIBUTION SIMILARITY IN ML /2

@ Probabilistic model fitting
Assume our learner is probabilistic, i.e., we model p(y|x) (for
example, logistic regression, Gaussian process, ...).

We want to minimize the difference between p(y|x) and the
conditional data generating process [P, based on the data
stemming from Py .

Many losses can be derived this way. (e.g., cross-entropy loss)
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MEASURING DISTRIBUTION SIMILARITY IN ML /3

@ Feature selection In feature selection, we want to choose
features the target strongly depends on.

_ - ]

We can measure dependency by measuring the similarity between
p(x,y) and p(x) - p(y).

We will later see that measuring this similarity with KL leads to the
concept of mutual information.
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MEASURING DISTRIBUTION SIMILARITY IN ML /4

@ Variational inference (VI) By Bayes’ theorem it holds that the
posterior density

_ plylX,0)p(0)
POXY) = T oyIX. 0)p(6)d6

However, computing the normaliziation constant
c = [ p(y|X,0)p(0)dé analytically is usually intractable.

Sampling from q(x)

In VI, we want to fit a density g, with parameters ¢ to p(6|X,y).
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KL DIVERGENCE

Divergences can be used to measure the similarity of distributions.

For distributions p, g they are defined such that
@ D(p,q) > 0,
@ D(p,q) =0iffp=q.
= divergences can be (and often are) non-symmetrical.

If the same measure dominates the distributions p, g, we can use KL.

For a target distribution p and parametrized distribution gy, we call
@ Dy (p||qe) forward KL,
@ Dy (qgllp) reverse KL.

In the following, we highlight some properties of the KL that make it
attractive from an ML perspective.
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KL DIVERGENCE /2

@ Forward KL for probabilistic model fitting
We have samples from the DGP p(y, x) when we fit our ML model.

If we have a probabilistic ML model g, the expected forward KL

p(y|x) )
dp(yx) /)

Ea i Dia(P0 () = Exc By o6
We can directly minimize this objective since

V o By Dt (P(-%)]| 9 (- 1%)) = Exups Byp Vb log ((¥[X))
— ExwpByp,, Vg log (q5(¥(X))

= We can estimate the gradient of the expected forward KL
without bias, although we can not evaluate p(y|x) in general.
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KL DIVERGENCE /3

@ Reverse KL for VI
Here, we know our target density p(@|X,y) only up to the
normalization constant, and we do not have samples from it.

We can directly apply the reverse KL since for any ¢ € R

_ 95(9)
Vo Dki(qpllp) = VEg~q, log < o(6)
95(9)

= V¢E0Nq¢ |Og <p(0) — V¢E9Nq¢ |Og C

=0

0
= VgEg~q, log <Cq¢;§(0))> .

= We can estimate the gradient of the reverse KL without bias
(even if we only have an unnormalized target distribution)
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KL DIVERGENCE /4

The asymmetry of the KL has the following implications

@ Forward KL Dy.(p||gp) = Explog (q‘;(&) is mass-covering

since p(x) log (q’jg)) ~ 0if p(x) = 0 and gy(x) % p(x).
99 (X)

@ Reverse KL Dk.(9yllp) = Ex~q, log ( o0 ) is mode-seeking

(zero-avoiding) since gg(x) log (i;’&?) > 0if p(x) ~ 0 and
ge(x) > 0
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Figure: Optimal g4 when gy is restricted to be Gaussian.
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