
Introduction to Machine Learning

Information Theory
KL and Maximum Entropy

Learning goals
Know the defining properties of the
KL

Understand the relationship between
the maximum entropy principle and
minimum discrimination information

Understand the relationship between
Shannon entropy and relative entropy



PROBLEMS WITH DIFFERENTIAL ENTROPY

Differential entropy compared to the Shannon entropy:

Differential entropy can be negative

Differential entropy is not invariant to coordinate transformations

⇒ Differential entropy is not an uncertainty measure and can not be
meaningfully used in a maximum entropy framework.

In the following, we derive an alternative measure, namely the KL
divergence (relative entropy), that fixes these shortcomings by taking
an inductive inference viewpoint. Caticha 2004
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https://pubs.aip.org/aip/acp/article-abstract/707/1/75/719597/Relative-Entropy-and-Inductive-Inference


INDUCTIVE INFERENCE

We construct a "new" entropy measure S(p) just by desired properties.

Let X be a measurable space with σ-algebra F and measure µ that
can be continuous or discrete.
We start with a prior distribution q over X dominated by µ and a
constraint of the form ∫

D
a(x)dq(x) = c ∈ R

with D ∈ F . The constraint function a(x) is analogous to moment
condition functions g(·) in the discrete case. We want to update the
prior distribution q to a posterior distribution p that fulfills the constraint
and is maximal w.r.t. S(p).
For this maximization to make sense, S must be transitive, i.e.,

S(p1) < S(p2),S(p2) < S(p3) ⇒ S(p1) < S(p3).
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CONSTRUCTING THE KL

1) Locality
The constraint must only update the prior distribution in D, i.e., the
region where it is active.

For this, it can be shown that the non-overlapping domains of X must
contribute additively to the entropy, i.e.,

S(p) =
∫

F(p(x), x)dµ(x)

where F is an unknown function.
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CONSTRUCTING THE KL / 2

2) Invariance to coordinate system

Enforcing 2) results in

S(p) =
∫

Φ

(
dp
dm

(x)
)

dm(x)

where Φ is an unknown function, m is another measure on X
dominated by µ and dp

dm the Radon–Nikodym derivative which becomes

the quotient of the respective pmfs for discrete measures,

the quotient of respective pdfs (if they exist) for cont. measures.
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CONSTRUCTING THE KL / 3

1 + 2)
⇒ m must be the prior distribution q, and our entropy measure must be
understood relatively to this prior, so S(p) becomes, in fact, S(p∥q).

3) Independent subsystems

If the prior distribution defines a subsystem of X to be independent,
then the priors can be independently updated, and the resulting
posterior is just their product density.
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CONSTRUCTING THE KL / 4

1 + 2 + 3)
Up to constants that do not change our entropy ranking, it follows that

S(p∥q) = −
∫

log

(
dp
dq

(x)
)

dp(x)

which is just the negative KL, i.e., −DKL(p∥q).

With our desired properties, we ended up with KL minimization

This is called the principle of minimum discrimination information,
i.e., the posterior should differ from the prior as least as possible

This principle is meaningful for continuous and discrete RVs

The maximum entropy principle is just a special case when X is
discrete and q is the uniform distribution.

Analogously, Shannon entropy can always be treated as negative
KL with uniform reference distribution.
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