
Introduction to Machine Learning

Information Theory
Entropy II

Learning goals
Further properties of entropy and
joint entropy

Understand that uniqueness theorem
justifies choice of entropy formula

Maximum entropy principle



ENTROPY OF BERNOULLI DISTRIBUTION

Let X be Bernoulli / a coin with P(X = 1) = s and P(X = 0) = 1 − s.

H(X) = −s · log2(s)− (1 − s) · log2(1 − s).

We note: If the coin is deterministic, so s = 1 or s = 0, then H(s) = 0;
H(s) is maximal for s = 0.5, a fair coin. H(s) increases monotonically
the closer we get to s = 0.5. This all seems plausible.
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JOINT ENTROPY

The joint entropy of two discrete random variables X and Y is:

H(X ,Y ) = H(pX ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log2(p(x , y))

Intuitively, the joint entropy is a measure of the total uncertainty in
the two variables X and Y . In other words, it is simply the entropy
of the joint distribution p(x , y).

There is nothing really new in this definition because H(X ,Y ) can
be considered to be a single vector-valued random variable.
More generally:

H(X1,X2, . . . ,Xn) = −
∑

x1∈X1

. . .
∑

xn∈Xn

p(x1, x2, . . . , xn) log2(p(x1, x2, . . . , xn))
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ENTROPY IS ADDITIVE UNDER INDEPENDENCE

7 Entropy is additive for independent RVs.

Let X and Y be two independent RVs. Then:

H(X ,Y ) = −
∑
x∈X

∑
y∈Y

p(x , y) log2(p(x , y))

= −
∑
x∈X

∑
y∈Y

pX (x)pY (y) log2(pX (x)pY (y))

= −
∑
x∈X

∑
y∈Y

pX (x)pY (y) log2(pX (x)) + pX (x)pY (y) log2(pY (y))

= −
∑
x∈X

∑
y∈Y

pX (x)pY (y) log2(pX (x))−
∑
y∈Y

∑
x∈X

pX (x)pY (y) log2(pY (y))

= −
∑
x∈X

pX (x) log2(pX (x))−
∑
y∈Y

pY (y) log2(pY (y)) = H(X) + H(Y )
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THE UNIQUENESS THEOREM
Khinchin 1957 showed that the only family of functions satisfying

H(p) is continuous in probabilities p(x)

adding or removing an event with p(x) = 0 does not change it

is additive for independent RVs

is maximal for a uniform distribution.

is of the following form:

H(p) = −λ
∑
x∈X

p(x) log p(x)

where λ is a positive constant. Setting λ = 1 and using the binary
logarithm gives us the Shannon entropy.
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https://books.google.de/books/about/Mathematical_Foundations_of_Information.html?id=0uvKF-LT_tMC&redir_esc=y


THE MAXIMUM ENTROPY PRINCIPLE

Assume we know M properties about a discrete distribution p(x) on X ,
stated as “moment conditions” for functions gm(·) and scalars αm:

E[gm(X)] =
∑
x∈X

gm(x)p(x) = αm for m = 0, . . . ,M

Maximum entropy principle Jaynes 2003 : Among all feasible
distributions satisfying the constraints, choose the one with maximum
entropy!

Motivation: ensure no unwarranted assumptions on p(x) are made
beyond what we know.

MEP follows similar logic to Occam’s razor and principle of
insufficient reason
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https://www.cambridge.org/core/books/probability-theory/9CA08E224FF30123304E6D8935CF1A99


THE MAXIMUM ENTROPY PRINCIPLE
Can be solved via Lagrangian multipliers (here with base e)

L(p(x), (λm)
M
m=0) = −

∑
x∈X

p(x) log(p(x))+λ0
(∑

x∈X

p(x)−1
)
+

M∑
m=1

λm
(∑

x∈X

gm(x)p(x)−αm
)

Finding critical points p∗(x) :

∂L
∂p(x)

= − log(p(x))−1+λ0+
M∑

m=1

λmgm(x)
!
= 0 ⇐⇒ p∗(x) = exp(λ0 − 1)exp

( M∑
m=1

λmgm(x)
)

This is a maximum as −1/p(x) < 0. Since probs must sum to 1 we get

1
!
=

∑
x∈X

p∗(x) =
1

exp(1 − λ0)

∑
x∈X

exp
( M∑

m=1

λmgm(x)
)
⇒ exp(1 − λ0) =

∑
x∈X

exp
( M∑

m=1

λmgm(x)
)

Plugging exp(1 − λ0) into p∗(x) we obtain the constrained maxent distribution:

p∗(x) =
exp

∑M
m=1 λmgm(x)∑

x∈X exp
∑M

m=1 λmgm(x)
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THE MAXIMUM ENTROPY PRINCIPLE

We now have: functional form of our distribution, up to M unknowns, the
λm. But also: M equations, the moment conditions. So we can solve.

Example: Consider discrete RV representing a six-sided die roll and
the moment condition E(X) = 4.8. What is the maxent distribution?

Condition means g1(x) = x , α1 = 4.8. Then for some λ solution is

p∗(x) =
exp (λg(x))∑6
j=1 exp(λg(xj))

=
exp (λx)∑6

j=1 exp (λxj)

Inserting into moment condition and solving (numerically) for λ:

4.8
!
=

6∑
j=1

xjp∗(xj) =
eλ + . . .+ 6(eλ)6

eλ + . . .+ (eλ)6 ⇒ λ ≈ 0.5141

x 1 2 3 4 5 6
p∗(x) 3.22% 5.38% 9.01% 15.06% 25.19% 42.13%
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