Introduction to Machine Learning

Information Theory
Entropy Il

Learning goals

Entropy H(p) = 0.88

@ Further properties of entropy and
joint entropy
@ Understand that uniqueness theorem
- justifies choice of entropy formula

@ Maximum entropy principle
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ENTROPY OF BERNOULLI DISTRIBUTION
Let X be Bernoulli/ a coin with P(X =1) =sand P(X =0) =1 —s.

H(X) = —s - logy(s) — (1 — s) - log,(1 — s).

s=0.3 Entropy H(p) = 0.88

We note: If the coin is deterministic, so s = 1 or s = 0, then H(s) = 0;
H(s) is maximal for s = 0.5, a fair coin. H(s) increases monotonically
the closer we get to s = 0.5. This all seems plausible.
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JOINT ENTROPY

@ The joint entropy of two discrete random variables X and Y is:

H(X,Y) = H(px,y) ZZPX y)loga(p(x,y))

XEX yey

@ Intuitively, the joint entropy is a measure of the total uncertainty in
the two variables X and Y. In other words, it is simply the entropy
of the joint distribution p(x, y).

@ There is nothing really new in this definition because H(X, Y) can
be considered to be a single vector-valued random variable.
@ More generally:

H(X1,X27-~'7 Z Z p(X17X27~--aXn)Ing(p(X17X27~~-7Xn))

Xy €Xy XnE€Xnp
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ENTROPY IS ADDITIVE UNDER INDEPENDENCE

@ Entropy is additive for independent RVs. x
Let X and Y be two independent RVs. Then: x

=) p(x,y) logs(p(x, )
XEX yeY x x

= Z pr x)py (y) loga(px(x)py(¥))

XEX yeY

=— Z Z px(x)py(y) loga(px(x)) + px(x)py(y) loga(py(y))
XEX yeY

= Z Z px(x)py (¥) log,(px(x Z Z px(x)py (y) logy(py(¥))
xeXxX yey yey xeX

= — > px(x) logy(px(x)) = Y pr(y) logz(py(y)) = H(X) + H(Y)

xXeX yey
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THE UNIQUENESS THEOREM

showed that the only family of functions satisfying
@ H(p) is continuous in probabilities p(x)
@ adding or removing an event with p(x) = 0 does not change it
@ is additive for independent RVs
@ is maximal for a uniform distribution.
is of the following form:

H(p) = =AY p(x) log p()

xeX

where ) is a positive constant. Setting A = 1 and using the binary
logarithm gives us the Shannon entropy.

Introduction to Machine Learning — 4/7

X X


https://books.google.de/books/about/Mathematical_Foundations_of_Information.html?id=0uvKF-LT_tMC&redir_esc=y

THE MAXIMUM ENTROPY PRINCIPLE

Assume we know M properties about a discrete distribution p(x) on X,
stated as “moment conditions” for functions gm(-) and scalars am,:

Elgm(X)] = Y _ gm(x)p(x) = am for m=0,...,M
xeX
Maximum entropy principle @ZIEEID: Among all feasible
distributions satisfying the constraints, choose the one with maximum
entropy!
@ Motivation: ensure no unwarranted assumptions on p(x) are made
beyond what we know.
@ MEP follows similar logic to Occam’s razor and principle of
insufficient reason
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https://www.cambridge.org/core/books/probability-theory/9CA08E224FF30123304E6D8935CF1A99

THE MAXIMUM ENTROPY PRINCIPLE

Can be solved via Lagrangian multipliers (here with base ¢e)

L)) = = 37 p(x) log(p(x))+a( 3 p(x)—1) Z (3 gn(x)p(x)~am)

L(p(x)
xXeXx xXeXx xXeXx
Finding critical points p*(x) :
oL u .
log(p(x))—1+X0+ Y Amgm(x) = 0 <= p"(x) = exp(ho — 1)exp (D Angn(x))
m=1

op(x) £
This is a maximum as —1/p(x) < 0. Since probs must sum to 1 we get
1—Zp( )7exp(1—)\ Zexp Z)\mgm :>exp1—)\o Zexp Z)\mgm(x)
xeXx xeX XeEX
Plugging exp(1 — X\o) into p*(x) we obtain the constrained maxent distribution:

cin P Amgm(X)
p(x) = 7
ZXEX exp Zm:1 )\mgm(X)
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THE MAXIMUM ENTROPY PRINCIPLE

We now have: functional form of our distribution, up to M unknowns, the
Am. But also: M equations, the moment conditions. So we can solve.

Example: Consider discrete RV representing a six-sided die roll and
the moment condition E(X) = 4.8. What is the maxent distribution?

@ Condition means g1(x) = x, @y = 4.8. Then for some X solution is

pr(x) = —PAIX)  exp ()

Yrem(Ag(x)) X exp (Ax)

@ Inserting into moment condition and solving (numerically) for \:

et +...+6(e)®
et ...+ (e')8

= A~ 0.5141

6
! *
48=7 xp"(x) =

=1

1 2 3 4 5 6
p*(x) | 3.22% | 5.38% | 9.01% | 15.06% | 25.19% | 42.13%
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