
Introduction to Machine Learning

Information Theory
Entropy I

Learning goals
Entropy measures expected
information for discrete RVs

Know entropy and its properties



INFORMATION THEORY

Information Theory is a field of study based on probability theory.

Foundation was laid by Claude Shannon in 1948; since then been
applied in: communication theory, computer science, optimization,
cryptography, machine learning and statistical inference.

Quantify the "amount" of information gained or uncertainty
reduced when a random variable is observed.

Also about storing and transmitting information.
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INFORMATION THEORY / 2

We introduce the basic concepts from a probabilistic perspective,
without referring too much to communication, channels or coding.

We will show some proofs, but not for everything. We recommend
Elements of Information Theory by Cover and Thomas as a
reference for more.

The application of information theory to the concepts of statistics
and ML can sometimes be confusing, we will try to make the
connection as clear as possible.

In this unit we develop entropy as a measure of uncertainty in
terms of expected information.
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ENTROPY AS SURPRISAL AND UNCERTAINTY

For a discrete random variable X with domain X ∋ x and pmf p(x):

H(X) := H(p) = −E[log2(p(X))] = −
∑
x∈X

p(x) log2 p(x)

= E

[
log2

(
1

p(X)

)]
=
∑
x∈X

p(x) log2
1

p(x)

Some technicalities first:

H is actually Greek capital letter Eta (η) for entropy

Base of the log simply specifies the unit we measure information
in, usually bits (base 2) or ’nats’ (base e)

If p(x) = 0 for an x , then p(x) log2 p(x) is taken to be zero,
because limp→0 p log2 p = 0.
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ENTROPY AS SURPRISAL AND UNCERTAINTY

H(X) = −E[log2(p(X))] = −
∑
x∈X

p(x) log2 p(x)

Now: What’s the point?
The negative log probabilities − log2 p(x) are called "surprisal"
More surprising means less likely
PMFs surprising, so with higher H, when events more equally likely
Entropy is simply expected surprisal

The final entropy is H(X) = 2.12 (bits).
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ENTROPY BASIC PROPERTIES

H(X) := H(p) = −E[log2(p(X))] = −
∑
x∈X

p(x) log2 p(x)

1 Entropy is non-negative, so H(X) ≥ 0

2 If one event has probability p(x) = 1, then H(X) = 0

3 Adding or removing an event with p(x) = 0 doesn’t change it

4 H(X) is continuous in probabilities p(x)

All these properties follow directly from the definition.
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ENTROPY RE-ORDERING

5 Symmetry. If the values p(x) in the pmf are re-ordered, entropy
does not change (proof is trivial).
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ENTROPY OF UNIFORM DISTRIBUTIONS

Let X be a uniform, discrete RV with g outcomes (g-sided fair die).

H(X) = −
g∑

i=1

1
g
log2

(
1
g

)
= log2 g

The more sides a die has, the harder it is to predict the outcome.
Unpredictability grows monotonically with the number of potential
outcomes, but at a decreasing rate.

© Introduction to Machine Learning – 7 / 10



ENTROPY IS MAXIMAL FOR UNIFORM

Naive observation:
Entropy min for 1-point and max for uniform distribution
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ENTROPY IS MAXIMAL FOR UNIFORM

6 Entropy is maximal for a uniform distribution,
for domain of size g: H(X) ≤ −g 1

g log2(
1
g ) = log2(g).

Proof: So we want to maximize w.r.t. all pi :

argmax
p1,p2,...,pg

−
g∑

i=1

pi log2 pi

subject to
g∑

i=1

pi = 1
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ENTROPY IS MAXIMAL FOR UNIFORM / 2

The Lagrangian L(p1, . . . , pg, λ) is :

L(p1, . . . , pg, λ) = −
g∑

i=1

pi log2(pi)− λ

( g∑
i=1

pi − 1

)

Solving when requiring ∇L = 0,

∂L(p1, . . . , pg, λ)

∂pi
= 0 = − log2(pi)−

1
log(2)

− λ

=⇒ pi =
2−λ

e
=⇒ pi =

1
g
,

last step follows from that all pi are equal and constraint

NB: We also could have solved the constraint for p1 and substitute
p1 = 1 −

∑g
i=2 pi in the objective to avoid constrained optimization.
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