Introduction to Machine Learning

Information Theory
Differential Entropy

Learning goals
@ Know that the entropy expresses

I expected information for continuous
RVs
: @ Know the basic properties of the

differential entropy
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DIFFERENTIAL ENTROPY

@ For a continuous random variable X with density function f(x) and
support X, the analogue of entropy is differential entropy:

h(X) := h(f) == —E[log(f(x))] = — /X £(x) log(f(x))dx

@ The base of the log is again somewhat arbitrary, and we could either use
2 (and measure in bits) or e (to measure in nats).

@ The integral above does not necessarily exist for all densities.

@ Differential entropy lacks the non-negativeness of discrete entropy:
h(X) < 0 is possible as f(x) > 1 is possible:
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DIFF. ENTROPY OF UNIFORM DISTRIBUTION

Let X be a uniform random variable on [0, a].

h(X) = — /O " ) log (#(x))ox

— /Oa 1; log <;> dx = log(a)

@ Fora<1,h(X)<0.a

Differential entropy: 0.41

Differential entropy: 0
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DIFF. ENTROPY OF GAUSSIAN

Let X ~ N (u,0?) and let us measure in nats: x
1 (=)
h(X) = 7/ f(x) log(f(x))dx = f/ f(x) log ( e wt ) dx
R 2mo? x
1 (x =2,
_—/f(x)log( )dx+/ f(x)
R Vero 202
Io<1>/x)dx—|— / dx xx
g V2ma?
1
=5 log (2m0®) + 5 = log(cV27e)
Differential entropy: 1.42 Differential entropy: 1.82
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DIFF. ENTROPY OF GAUSSIAN

h(X) = — /}R f(x) log(f(x))dx = log(cv/2me)

@ h(X) is not a function of 4 (see translation invariance later).
@ As o2 increases, the differential entropy also increases.
@ Foro? < 5~ ~ 0.059, it is negative.

Differential Entropy of Normal Density

sign switch at 0.059
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DIFF. ENTROPY VS. DISCRETE

It is not so simple as to characterize h(X) as a straightforward
generalization of H(X) of a limiting process. Consider the quantized
random variable X2, which is defined by

XA=x it iA<X<(i+1)A

al;lk

If the density f(x) of the random variable X is Riemann-integrable, then
H(X?) 4 log(A) — h(X) as A — 0.

Thus, the entropy of an n-bit quantization of a continuous random
variable X is approximately h(X) + n.
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JOINT DIFFERENTIAL ENTROPY

@ For a continuous random vector X with density function f(x) and
support &, differential entropy is also defined as:

h(X) = h(Xi, ..., Xy) = h(f) = — /X £(x) log((x))dx

@ Hence this also defines the joint differential entropy for a set of
continuous RVs.

Entropy of a multivariate normal distribution: If X ~ N(u, X) is
multivariate Gaussian, then

h(X) = % log(2me)"|X|  (nats)
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PROPERTIES OF DIFFERENTIAL ENTROPY

Q@ h(f) can be negative.

@ h(f) is additive for independent RVs.

© h(f) is maximized by the multivariate normal, if we restrict to all
distributions with the same (co)variance, so
h(X) < }log(2me)"|Z].

© h(f) is maximized by the continuous uniform distribution for a
random variable with a fixed range.

@ Translation-invariant, h(X + a) = h(X).

Q h(aX) = h(X) + log |al.

@ h(AX) = h(X) + log |A| for random vectors and matrix A.

3) and 4) are slightly involved to prove, while the other properties are
relatively straightforward to show
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