
Introduction to Machine Learning

Information Theory
Differential Entropy

Learning goals
Know that the entropy expresses
expected information for continuous
RVs

Know the basic properties of the
differential entropy



DIFFERENTIAL ENTROPY

For a continuous random variable X with density function f (x) and
support X , the analogue of entropy is differential entropy:

h(X) := h(f ) := −E[log(f (x))] = −
∫
X

f (x) log(f (x))dx

The base of the log is again somewhat arbitrary, and we could either use
2 (and measure in bits) or e (to measure in nats).

The integral above does not necessarily exist for all densities.

Differential entropy lacks the non-negativeness of discrete entropy:
h(X) < 0 is possible as f (x) > 1 is possible:

The diffent. is given
by the integral:
h(X) = −0.48.
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DIFF. ENTROPY OF UNIFORM DISTRIBUTION

Let X be a uniform random variable on [0, a].

h(X) = −
∫ a

0
f (x) log(f (x))dx

= −
∫ a

0

1
a
log

(
1
a

)
dx = log(a)

For a < 1, h(X) < 0. a
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DIFF. ENTROPY OF GAUSSIAN
Let X ∼ N (µ, σ2) and let us measure in nats:

h(X) = −
∫
R

f (x) log(f (x))dx = −
∫
R

f (x) log
(

1√
2πσ2

e− (x−µ)2

2σ2

)
dx

= −
∫
R

f (x) log
(

1√
2πσ2

)
dx +

∫
R

f (x)
(x − µ)2

2σ2 dx

= − log

(
1√

2πσ2

)∫
R

f (x)dx︸ ︷︷ ︸
=1

+
1

2σ2

∫
R

f (x)(x − µ)2 dx︸ ︷︷ ︸
=:σ2

=
1
2
log

(
2πσ2)+ 1

2
= log(σ

√
2πe)
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DIFF. ENTROPY OF GAUSSIAN

h(X) = −
∫
R

f (x) log(f (x))dx = log(σ
√

2πe)

h(X) is not a function of µ (see translation invariance later).

As σ2 increases, the differential entropy also increases.

For σ2 < 1
2πe ≈ 0.059, it is negative.
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DIFF. ENTROPY VS. DISCRETE

It is not so simple as to characterize h(X) as a straightforward
generalization of H(X) of a limiting process. Consider the quantized
random variable X∆, which is defined by

X∆ = xi if i∆ ≤ X < (i + 1)∆

If the density f (x) of the random variable X is Riemann-integrable, then

H(X∆) + log(∆) → h(X) as ∆ → 0.

Thus, the entropy of an n-bit quantization of a continuous random
variable X is approximately h(X) + n.
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JOINT DIFFERENTIAL ENTROPY

For a continuous random vector X with density function f (x) and
support X , differential entropy is also defined as:

h(X) = h(X1, . . . ,Xn) = h(f ) = −
∫
X

f (x) log(f (x))dx

Hence this also defines the joint differential entropy for a set of
continuous RVs.

Entropy of a multivariate normal distribution: If X ∼ N(µ,Σ) is
multivariate Gaussian, then

h(X) =
1
2
log(2πe)n|Σ| (nats)
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PROPERTIES OF DIFFERENTIAL ENTROPY

1 h(f ) can be negative.
2 h(f ) is additive for independent RVs.
3 h(f ) is maximized by the multivariate normal, if we restrict to all

distributions with the same (co)variance, so
h(X) ≤ 1

2 log(2πe)n|Σ|.
4 h(f ) is maximized by the continuous uniform distribution for a

random variable with a fixed range.
5 Translation-invariant, h(X + a) = h(X).
6 h(aX) = h(X) + log |a|.
7 h(AX) = h(X) + log |A| for random vectors and matrix A.

3) and 4) are slightly involved to prove, while the other properties are
relatively straightforward to show
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