Introduction to Machine Learning

Information Theory Cross-Entropy and KL

X \times \times

Learning goals

- Know the cross-entropy
- Understand the connection between entropy, cross-entropy, and KL divergence

CROSS-ENTROPY - DISCRETE CASE

Cross-entropy measures the average amount of information required to represent an event from one distribution *p* using a predictive scheme based on another distribution q (assume they have the same domain $\mathcal X$ as in KL).

$$
H(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{1}{q(x)} \right) = -\sum_{x \in \mathcal{X}} p(x) \log (q(x)) = -\mathbb{E}_{X \sim p}[\log(q(X))]
$$

For now, we accept the formula as-is. More on the underlying intuition follows in the content on inf. theory for ML and sourcecoding.

- Entropy = Avg. amount of information if we optimally encode *p*
- Cross-Entropy = Avg. amount of information if we suboptimally encode *p* with *q*
- *DLKL*(*p*∥*q*): Difference between the two
- $H(p||q)$ sometimes also denoted as $H_q(p)$ to set it apart from KL

 $\times\overline{\times}$

CROSS-ENTROPY - DISCRETE CASE / 2

We can summarize this also through this identity:

$$
H(p\|q) = H(p) + D_{\mathsf{KL}}(p\|q)
$$

This is because:

$$
H(p) + D_{KL}(p||q) = -\sum_{x \in \mathcal{X}} p(x) \log p(x) + \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}
$$

=
$$
\sum_{x \in \mathcal{X}} p(x) (-\log p(x) + \log p(x) - \log q(x))
$$

=
$$
-\sum_{x \in \mathcal{X}} p(x) \log q(x) = H(p||q)
$$

CROSS-ENTROPY - CONTINUOUS CASE

For continuous density functions $p(x)$ and $q(x)$:

$$
H(p||q) = \int p(x) \log \left(\frac{1}{q(x)}\right) dx = -\int p(x) \log (q(x)) dx = -\mathbb{E}_{X \sim p}[\log(q(X))]
$$

- It is not symmetric.
- As for the discrete case, $H(p||q) = h(p) + D_{KL}(p||q)$ holds.
- Can now become negative, as the $h(p)$ can be negative!

CROSS-ENTROPY EXAMPLE

Let $p(x) = N(0, 1)$ and $q(x) = LP(0, 3)$. We can visualize

H(p || q) = *H*(p) + *D*_{*KL*}(p || q)

X X X

CROSS-ENTROPY EXAMPLE

Let $p(x) = LP(0, 3)$ and $q(x) = N(0, 1)$. We can visualize

 $H(p||q) = H(p) + D_{KL}(p||q)$

X X X

PROOF: MAXIMUM OF DIFFERENTIAL ENTROPY

Claim: For a given variance, the continuous distribution that maximizes differential entropy is the Gaussian.

Proof: Let $g(x)$ be a Gaussian with mean μ and variance σ^2 and $f(x)$ an arbitrary density function with the same variance. Since differential entropy is translation invariant, we can assume $f(x)$ and $g(x)$ have the same mean.

The KL divergence (which is non-negative) between $f(x)$ and $g(x)$ is:

$$
0 \leq D_{KL}(f||g) = -h(f) + H(p||q)
$$

= $-h(f) - \int_{-\infty}^{\infty} f(x) \log(g(x)) dx$ (1)

 $\overline{\mathsf{X}}$

PROOF: MAXIMUM OF DIFFERENTIAL ENTROPY / 2

The second term in (1) is,

$$
\int_{-\infty}^{\infty} f(x) \log(g(x)) dx = \int_{-\infty}^{\infty} f(x) \log\left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}\right) dx
$$

=
$$
\int_{-\infty}^{\infty} f(x) \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) dx + \log(e) \int_{-\infty}^{\infty} f(x) \left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx
$$

=
$$
-\frac{1}{2} \log\left(2\pi\sigma^2\right) - \log(e) \frac{\sigma^2}{2\sigma^2} = -\frac{1}{2} (\log\left(2\pi\sigma^2\right) + \log(e))
$$

=
$$
-\frac{1}{2} \log\left(2\pi e \sigma^2\right) = -h(g), \tag{2}
$$

 \times \times

where the last equality follows from the normal distribution example of the entropy chapter. Combining (1) and (2) results in

$$
h(g)-h(f)\geq 0
$$

with equality when $f(x) = g(x)$ (following from the properties of Kullback-Leibler divergence).