
Introduction to Machine Learning

Information Theory
Cross-Entropy and KL

Learning goals
Know the cross-entropy

Understand the connection between
entropy, cross-entropy, and KL
divergence



CROSS-ENTROPY - DISCRETE CASE

Cross-entropy measures the average amount of information required
to represent an event from one distribution p using a predictive scheme
based on another distribution q (assume they have the same domain X
as in KL).

H(p∥q) =
∑
x∈X

p(x) log
(

1
q(x)

)
= −

∑
x∈X

p(x) log (q(x)) = −EX∼p[log(q(X))]

For now, we accept the formula as-is. More on the underlying intuition
follows in the content on inf. theory for ML and sourcecoding.

Entropy = Avg. amount of information if we optimally encode p

Cross-Entropy = Avg. amount of information if we suboptimally
encode p with q

DLKL(p∥q): Difference between the two

H(p∥q) sometimes also denoted as Hq(p) to set it apart from KL
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CROSS-ENTROPY - DISCRETE CASE / 2

We can summarize this also through this identity:

H(p∥q) = H(p) + DKL(p∥q)

This is because:

H(p) + DKL(p∥q) = −
∑
x∈X

p(x) log p(x) +
∑
x∈X

p(x) log
p(x)
q(x)

=
∑
x∈X

p(x)(− log p(x) + log p(x)− log q(x))

= −
∑
x∈X

p(x) log q(x) = H(p∥q)
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CROSS-ENTROPY - CONTINUOUS CASE

For continuous density functions p(x) and q(x):

H(p∥q) =
∫

p(x) log
(

1
q(x)

)
dx = −

∫
p(x) log (q(x)) dx = −EX∼p[log(q(X))]

It is not symmetric.

As for the discrete case, H(p∥q) = h(p) + DKL(p∥q) holds.

Can now become negative, as the h(p) can be negative!
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CROSS-ENTROPY EXAMPLE

Let p(x) = N(0, 1) and q(x) = LP(0, 3). We can visualize

H(p∥q) = H(p) + DKL(p∥q)
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PROOF: MAXIMUM OF DIFFERENTIAL ENTROPY

Claim: For a given variance, the continuous distribution that maximizes
differential entropy is the Gaussian.

Proof: Let g(x) be a Gaussian with mean µ and variance σ2 and f (x)
an arbitrary density function with the same variance. Since differential
entropy is translation invariant, we can assume f (x) and g(x) have the
same mean.

The KL divergence (which is non-negative) between f (x) and g(x) is:

0 ≤ DKL(f∥g) = −h(f ) + H(p∥q)

= −h(f )−
∫ ∞

−∞
f (x) log(g(x))dx

(1)
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PROOF: MAXIMUM OF DIFFERENTIAL ENTROPY
/ 2

The second term in (1) is,

∫ ∞

−∞
f (x) log(g(x))dx =

∫ ∞

−∞
f (x) log

(
1√

2πσ2
e− (x−µ)2

2σ2

)
dx

=

∫ ∞

−∞
f (x) log

(
1√

2πσ2

)
dx + log(e)

∫ ∞

−∞
f (x)

(
− (x − µ)2

2σ2

)
dx

= −1
2
log

(
2πσ2

)
− log(e)

σ2

2σ2
= −1

2
(log

(
2πσ2

)
+ log(e))

= −1
2
log

(
2πeσ2

)
= −h(g) , (2)

where the last equality follows from the normal distribution example of
the entropy chapter. Combining (1) and (2) results in

h(g)− h(f ) ≥ 0

with equality when f (x) = g(x) (following from the properties of
Kullback-Leibler divergence).
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