Introduction to Machine Learning

Information Theory
Cross-Entropy and KL

Binary Cross-Entropy Loss

Learning goals
@ Know the cross-entropy

@ Understand the connection between
entropy, cross-entropy, and KL
divergence
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CROSS-ENTROPY - DISCRETE CASE

Cross-entropy measures the average amount of information required X
to represent an event from one distribution p using a predictive scheme
based on another distribution g (assume they have the same domain X x
as in KL).
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For now, we accept the formula as-is. More on the underlying intuition
follows in the content on inf. theory for ML and sourcecoding.

@ Entropy = Avg. amount of information if we optimally encode p

@ Cross-Entropy = Avg. amount of information if we suboptimally
encode p with g

@ DLk (p||q): Difference between the two

@ H(pl||q) sometimes also denoted as Hy(p) to set it apart from KL
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CROSS-ENTROPY - DISCRETE CASE /2

We can summarize this also through this identity:

This is because:

H(p) + Dk.(pl|q)

H(pllg) = H(p) + Dk.(pllq)

=) p(x)logp(x) + > p(x log

XeX xXeX
> p(x)(—log p(x) + log p(x) — log q(x))
xeX

— > p(x)log q(x) = H(pl|q)

xeX

Introduction to Machine Learning — 2/7

X X



CROSS-ENTROPY - CONTINUOUS CASE

For continuous density functions p(x) and q(x):

X

X
H(pllq) = / p(x) log (qg)> o= / p(x)10g (q(x)) dx = —Exp[log(q(X))
X X
@ It is not symmetric.

@ As for the discrete case, H(p||q) = h(p) + Dki.(p||q) holds.
@ Can now become negative, as the h(p) can be negative!
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CROSS-ENTROPY EXAMPLE

Let p(x) = N(0, 1) and g(x) = LP(0, 3). We can visualize x
H(pllq) = H(p) + Dk.(pllq) X
N(0,1) and LP(0,3) Densities =1.42, D_KL(pl|q) = 0.64 x x
H(pllq) = 1.42 + 0.64 = 2.06 H(pllq) = -Int[p(x)*log(q(x))dx] = 2.06
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CROSS-ENTROPY EXAMPLE
Let p(x) = LP(0,3) and q(x) = N(0, 1). We can visualize

H(pllq) = H(p) + Dk.(pllq)

N(0,1) and LP(0,3) Densities H(p) =2.78, D_KL(pllq) = 6.8
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H(pllq) = 2.78 + 6.8 = 9.58 H(pl|q) = -Int[p(x)*log(q(x))dx] = 9.58
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PROOF: MAXIMUM OF DIFFERENTIAL ENTROPY

Claim: For a given variance, the continuous distribution that maximizes
differential entropy is the Gaussian.

Proof: Let g(x) be a Gaussian with mean x and variance o2 and f(x)

an arbitrary density function with the same variance. Since differential

entropy is translation invariant, we can assume f(x) and g(x) have the
same mean.

The KL divergence (which is non-negative) between f(x) and g(x) is:
0 < Dia(fllg) = —h(f) + H(pllq)
o (1)
——h(n) - [ 1x)log(g(x))ax

—00
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PROOF: MAXIMUM OF DIFFERENTIAL ENTROPY
/2

The second term in (1) is,

/ ” f(x) log(g(x))dx = /_ o; (x) log (Lef (21‘?2> dx

o V2ro?
_ /jo (x) log (ﬁ) dx + log(e) /jo f(x) (-“2_05)2) dx
= —% log (27102) - |og(e)%:2 = —%(Iog (277(72> + log(e))
= f% log (27reaz) = —h(g), )

where the last equality follows from the normal distribution example of
the entropy chapter. Combining (1) and (2) results in

h(g) — h(f) = 0

with equality when f(x) = g(x) (following from the properties of
Kullback-Leibler divergence).
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