
Introduction to Machine Learning

Gaussian Processes
Training of a Gaussian Process
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Fit Penalty LogLikelihood Learning goals
Training of GPs via Maximum
Likelihood estimation of its
hyperparameters

Computational complexity is
governed by matrix inversion of the
covariance matrix



TRAINING OF A GAUSSIAN PROCESS

To make predictions for a regression task by a Gaussian process,
one simply needs to perform matrix computations.

But for this to work out, we assume that the covariance functions is
fully given, including all of its hyperparameters.

A very nice property of GPs is that we can learn the numerical
hyperparameters of a selected covariance function directly during
GP training.
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TRAINING A GP VIA MAXIMUM LIKELIHOOD

Let us assume

y = f (x) + ϵ, ϵ ∼ N
(
0, σ2) ,

where f (x) ∼ GP (0, k (x, x′|θ)).

Observing y ∼ N
(
0,K + σ2I

)
, the marginal log-likelihood (or

evidence) is

log p(y | X ,θ) = log

[
(2π)−n/2 |K y |−1/2 exp

(
−1

2
y⊤K−1

y y
)]

= −1
2

yT K−1
y y − 1

2
log |K y | −

n
2
log 2π.

with K y := K + σ2I and θ denoting the hyperparameters (the
parameters of the covariance function).
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TRAINING A GP VIA MAXIMUM LIKELIHOOD / 2

The three terms of the marginal likelihood have interpretable roles,
considering that the model becomes less flexible as the length-scale
increases:

the data fit −1
2yT K−1

y y , which tends to decrease if the length
scale increases

the complexity penalty −1
2 log |K y |, which depends on the

covariance function only and which increases with the
length-scale, because the model gets less complex with growing
length-scale

a normalization constant −n
2 log 2π
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TRAINING A GP: EXAMPLE

To visualize this, we consider a zero-mean Gaussian process with
squared exponential kernel

k(x, x′) = exp

(
− 1

2ℓ2 ∥x − x′∥2
)
,

Recall, the model is smoother and less complex for higher
length-scale ℓ.

We show how the

data fit −1
2yT K−1

y y ,
the complexity penalty −1

2 log |K y |, and
the overall value of the marginal likelihood log p(y | X ,θ)

behave for increasing value of ℓ.
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TRAINING A GP: EXAMPLE / 2
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The left plot shows how values of the data fit − 1
2 yT K−1

y y , the complexity penalty

− 1
2 log |K y | (high value means less penalization) and the overall marginal likelihood

log p(y | X ,θ) behave for increasing values of ℓ.
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TRAINING A GP: EXAMPLE / 3
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The left plot shows how values of the data fit − 1
2 yT K−1

y y , the complexity penalty
− 1

2 log |K y | (high value means less penalization) and the overall marginal likelihood
log p(y | X ,θ) behave for increasing values of ℓ.

A small ℓ results in a good fit, but a high complexity penalty (low − 1
2 log |K y |).
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TRAINING A GP: EXAMPLE / 4
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The left plot shows how values of the data fit − 1
2 yT K−1

y y , the complexity penalty
− 1

2 log |K y | (high value means less penalization) and the overall marginal likelihood
log p(y | X ,θ) behave for increasing values of ℓ.

A large ℓ results in a poor fit.
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TRAINING A GP: EXAMPLE / 5
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The left plot shows how values of the data fit − 1
2 yT K−1

y y , the complexity penalty
− 1

2 log |K y | (high value means less penalization) and the overall marginal likelihood
log p(y | X ,θ) behave for increasing values of ℓ.

The maximizer of the log-likelihood, ℓ = 0.5, balances complexity and fit.
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TRAINING A GP VIA MAXIMUM LIKELIHOOD

To set the hyperparameters by maximizing the marginal likelihood, we
seek the partial derivatives w.r.t. the hyperparameters

∂

∂θj
log p(y | X ,θ) =

∂

∂θj

(
−1

2
yT K−1

y y − 1
2
log |K y | −

n
2
log 2π

)
=

1
2

y⊤K−1 ∂K
∂θj

K−1y − 1
2

tr
(

K−1 ∂K
∂θ

)
=

1
2

tr
(
(K−1yyT K−1 − K−1)

∂K
∂θj

)
using ∂

∂θj
K−1 = −K−1 ∂K

∂θj
K−1 and ∂

∂θ log |K | = tr
(
K−1 ∂K

∂θ

)
.
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TRAINING A GP VIA MAXIMUM LIKELIHOOD / 2

The complexity and the runtime of training a Gaussian process is
dominated by the computational task of inverting K - or let’s rather
say for decomposing it.

Standard methods require O(n3) time (!) for this.

Once K−1 - or rather the decomposition -is known, the
computation of the partial derivatives requires only O(n2) time per
hyperparameter.

Thus, the computational overhead of computing derivatives is
small, so using a gradient based optimizer is advantageous.
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TRAINING A GP VIA MAXIMUM LIKELIHOOD / 3

Workarounds to make GP estimation feasible for big data include:

using kernels that yield sparse K : cheaper to invert.

subsampling the data to estimate θ: O(m3) for subset of size m.

combining estimates on different subsets of size m:
Bayesian committee, O(nm2).

using low-rank approximations of K by using only a representative
subset (“inducing points”) of m training data X m:
Nyström approximation K ≈ K nmK−

mmK mn,
O(nmk + m3) for a rank-k-approximate inverse of K mm.

exploiting structure in K induced by the kernel: exact solutions but
complicated maths, not applicable for all kernels.

... this is still an active area of research.
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