Introduction to Machine Learning
Gaussian Processes

Training of a Gaussian Process

Learning goals

Fit — Penalty LogLikelihood

@ Training of GPs via Maximum
: // Likelihood estimation of its
hyperparameters

@ Computational complexity is
governed by matrix inversion of the
covariance matrix
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TRAINING OF A GAUSSIAN PROCESS

@ To make predictions for a regression task by a Gaussian process,
one simply needs to perform matrix computations.

@ But for this to work out, we assume that the covariance functions is
fully given, including all of its hyperparameters.

@ A very nice property of GPs is that we can learn the numerical
hyperparameters of a selected covariance function directly during
GP training.

Introduction to Machine Learning — 1/ 11

X X



TRAINING A GP VIA MAXIMUM LIKELIHOOD

Let us assume

y=1f(x)+e e~N(0,0%),
where f(x) ~ GP (0, k (x,x'|@)).

Observingy ~ N (O, K + azl), the marginal log-likelihood (or
evidence) is

_ _ 1 _
logp(y | X,0) = log |(21) "% |K,|~"/2 exp <—2yTKy‘y>]
1 _ 1 n
= f§yTKy1y—5Iog|Ky]—§Iog27r.

with K, :== K + oI and 0 denoting the hyperparameters (the
parameters of the covariance function).
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TRAINING A GP VIA MAXIMUM LIKELIHOOD /2

The three terms of the marginal likelihood have interpretable roles,
considering that the model becomes less flexible as the length-scale
increases:

e the data fit —Jy" K"y, which tends to decrease if the length
scale increases

e the complexity penalty — log |K |, which depends on the
covariance function only and which increases with the

length-scale, because the model gets less complex with growing
length-scale

@ anormalization constant —7 log 27
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TRAINING A GP: EXAMPLE

To visualize this, we consider a zero-mean Gaussian process with
squared exponential kernel

1
k(xx) =0~ rallx 7).

@ Recall, the model is smoother and less complex for higher
length-scale ¢.
@ We show how the
o datafit —3y"K,y,
e the complexity penalty —J log |K,|, and
e the overall value of the marginal likelihood log p(y | X, )

behave for increasing value of /.
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TRAINING A GP: EXAMPLE /2

Data Points
Fit — Penalty — LogLikelihood
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The left plot shows how values of the data fit —15 yTK;1 y, the complexity penalty
—% log |K,| (high value means less penalization) and the overall marginal likelihood
log p(y | X, 0) behave for increasing values of £.
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TRAINING A GP: EXAMPLE /3

_ o 1=0.2
Fit — Penalty — LogLikelihood
i .
L]
1
) . L]
L
07 ) ° .
o ot > ] A
3 -4+ ¢
o
>
A .
- /\ -1 A
L]
05 10 15 20 2 1 0 1 2
| X

The left plot shows how values of the data fit 715 yTKy‘1 y, the complexity penalty
—15 log |K,| (high value means less penalization) and the overall marginal likelihood
log p(y | X, ) behave for increasing values of .

A small ¢ results in a good fit, but a high complexity penalty (low —% log |K,|).
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TRAINING A GP: EXAMPLE /4

1=2
Fit — Penalty — LogLikelihood
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The left plot shows how values of the data fit 715 yTKy‘1 y, the complexity penalty
—15 log |K,| (high value means less penalization) and the overall marginal likelihood
log p(y | X, ) behave for increasing values of .

A large / results in a poor fit.
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TRAINING A GP: EXAMPLE /5

o 1=05
Fit — Penalty — LogLikelihood
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The left plot shows how values of the data fit 715 yTKy‘1 y, the complexity penalty
—15 log |K,| (high value means less penalization) and the overall marginal likelihood
log p(y | X, ) behave for increasing values of .

The maximizer of the log-likelihood, £ = 0.5, balances complexity and fit.
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TRAINING A GP VIA MAXIMUM LIKELIHOOD

To set the hyperparameters by maximizing the marginal likelihood, we X
seek the partial derivatives w.r.t. the hyperparameters

%mgp(y\x,o) = a%, (—%yTKy_‘y—%log|Ky|—glogzﬂ-) < %
= %tr ((K"nyK*1 - K*‘)%’é)
using K" = ~K~19KK~" and 2 log |K| = tr (K~12%).
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TRAINING A GP VIA MAXIMUM LIKELIHOOD /2

@ The complexity and the runtime of training a Gaussian process is
dominated by the computational task of inverting K - or let’s rather
say for decomposing it.

@ Standard methods require O(n®) time (!) for this.

@ Once K~ - or rather the decomposition -is known, the
computation of the partial derivatives requires only O(n?) time per
hyperparameter.

@ Thus, the computational overhead of computing derivatives is
small, so using a gradient based optimizer is advantageous.
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TRAINING A GP VIA MAXIMUM LIKELIHOOD /3

Workarounds to make GP estimation feasible for big data include:

using kernels that yield sparse K: cheaper to invert.

subsampling the data to estimate §: O(m®) for subset of size m.
combining estimates on different subsets of size m:

Bayesian committee, O(nm?).

using low-rank approximations of K by using only a representative
subset (“inducing points”) of m training data X ,:

Nystrom approximation K ~ K, K ,,,K mn,

O(nmk + m®) for a rank-k-approximate inverse of K .

exploiting structure in K induced by the kernel: exact solutions but
complicated maths, not applicable for all kernels.

.. this is still an active area of research.
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