
Introduction to Machine Learning

Gaussian Processes
Gaussian Posterior Process and
Prediction
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Learning goals
Know how to derive the posterior
process

GPs are interpolating and spatial
models

Model noise via a nugget term



GAUSSIAN POSTERIOR PROCESS AND
PREDICTION

So far, we have learned how to sample from a GP prior.

However, most of the time, we are not interested in drawing
random functions from the prior. Instead, we usually like to use the
knowledge provided by the training data to predict values of f at a
new test point x∗.

In what follows, we will investigate how to update the Gaussian
process prior (→ posterior process) and how to make predictions.
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Gaussian Posterior Process and Prediction
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POSTERIOR PROCESS

Let us now distinguish between observed training inputs, also
denote by a design matrix X, and the corresponding observed
values

f =
[
f
(

x(1)
)
, ..., f

(
x(n)

)]
and one single unobserved test point x∗ with f∗ = f (x∗) .

We now want to infer the distribution of f∗|x∗,X , f .

f∗ = f (x∗)

Assuming a zero-mean GP prior GP (0, k(x, x′)) we know[
f
f∗

]
∼ N

(
0,
[

K k∗
kT
∗ k∗∗

])
.

Here, K =
(
k
(
x(i), x(j)

))
i,j , k∗ =

[
k
(
x∗, x(1)

)
, ..., k

(
x∗, x(n)

)]
and k∗∗ = k(x∗, x∗).
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POSTERIOR PROCESS / 2

Given that f is observed, we can apply the general rule for
condition (∗) of Gaussian random variables and obtain the
following formula:

f∗ | x∗,X, f ∼ N (kT
∗ K−1f , k∗∗ − kT

∗ K−1k∗).

As the posterior is a Gaussian, the maximum a-posteriori estimate,
i.e. the mode of the posterior distribution, is kT

∗ K−1f .
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POSTERIOR PROCESS / 3

(∗) General rule for condition of Gaussian random variables:

If the m-dimensional Gaussian vector z ∼ N (µ,Σ) can be partitioned
with z = (z1, z2) where z1 is m1-dimensional and z2 is
m2-dimensional, and:

(µ1, µ2) , Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

then the conditioned distribution of z2 | z1 = a is a multivariate normal

N
(
µ2 +Σ21Σ

−1
11 (a − µ1) ,Σ22 − Σ21Σ

−1
11 Σ12

)
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GP PREDICTION: TWO POINTS

Let us visualize this by a simple example:
Assume we observed a single training point x = −0.5, and want to
make a prediction at a test point x∗ = 0.5.
Under a zero-mean GP with k(x, x′) = exp(−1

2∥x − x′∥2), we
compute the cov-matrix:[

f
f∗

]
∼ N

(
0,
[

1 0.61
0.61 1

])
.

Assume that we observe the point f (x) = 1.
We compute the posterior distribution:

f∗ | x∗, x, f ∼ N (kT
∗ K−1f , k∗∗ − kT

∗ K−1k∗)

∼ N (0.61 · 1 · 1, 1 − 0.61 · 1 · 0.61)

∼ N (0.61, 0.6279)

The MAP-estimate for x∗ is f (x∗) = 0.61, and the uncertainty
estimate is 0.6279.
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GP PREDICTION: TWO POINTS

Shown is the bivariate normal density, and the respective marginals.
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GP PREDICTION: TWO POINTS

Assume we observed f (x) = 1 for the training point x = −0.5.
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GP PREDICTION: TWO POINTS

We condition the Gaussian on f (x) = 1.
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GP PREDICTION: TWO POINTS

We compute the posterior distribution of f (x∗) given that f (x) = 1.
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GP PREDICTION: TWO POINTS

A possible predictor for f at x∗ is the MAP of the posterior distribution.
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GP PREDICTION: TWO POINTS

We can do this for different values x∗, and show the respective mean (grey line) and

standard deviations (grey area is mean ±2· posterior standard deviation).
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POSTERIOR PROCESS

We can generalize the formula for the posterior process for
multiple unobserved test points:

f ∗ =
[
f
(

x(1)∗

)
, ..., f

(
x(m)
∗

)]
.

Under a zero-mean Gaussian process, we have[
f
f ∗

]
∼ N

(
0,
[

K K∗
KT
∗ K∗∗

])
,

with K∗ =
(

k
(

x(i), x(j)∗
))

i,j
, K∗∗ =

(
k
(

x(i)∗ , x(j)∗
))

i,j
.
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POSTERIOR PROCESS / 2

Similar to the single test point situation, to get the posterior
distribution, we exploit the general rule of conditioning for
Gaussians:

f ∗ | X∗,X, f ∼ N (KT
∗ K−1f ,K∗∗ − KT

∗ K−1K∗).

This formula enables us to talk about correlations among different
test points and sample functions from the posterior process.
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Properties of a Gaussian Process
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GP AS INTERPOLATOR

The “prediction” for a training point x(i) is the exact function value
f
(
x(i)

)
f | X, f ∼ N (KK−1f ,K − KT K−1K) = N (f , 0).

Thus, a Gaussian process is a function interpolator.
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After observing the training points (red), the posterior process (black) interpolates the training points.
 (k(x,x') is Matèrn with nu = 2.5, the default for DiceKriging::km)
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GP AS A SPATIAL MODEL
The correlation among two outputs depends on distance of the corresponding
input points x and x′ (e.g. Gaussian covariance kernel

k(x, x′) = exp
(

−∥x−x′∥2

2l2

)
)

Hence, close data points with high spatial similarity k(x, x′) enter into more

strongly correlated predictions: k⊤
∗ K−1f (k∗ :=

(
k(x, x(1)), ..., k(x, x(n))

)
).
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Example: Posterior mean of a GP that was fitted with the Gaussian covariance

kernel with l = 1.
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GP AS A SPATIAL MODEL / 2

Posterior uncertainty increases if the new data points are far from
the design points.

The uncertainty is minimal at the design points, since the posterior
variance is zero at these points.
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Example (continued): Posterior variance.
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Noisy Gaussian Process
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NOISY GAUSSIAN PROCESS

So far, we implicitly assumed that we had access to the true
function value f (x).

For the squared exponential kernel, for example, we have

Cov
(

f (x(i)), f (x(i))
)
= 1.

As a result, the posterior Gaussian process is an interpolator:
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After observing the training points (red), the posterior process (black) interpolates the training points.
 (k(x,x') is Matèrn with nu = 2.5, the default for DiceKriging::km)
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NOISY GAUSSIAN PROCESS / 2

In reality, however, this is often not the case.

We often only have access to a noisy version of the true function
value

y = f (x) + ϵ, ϵ ∼ N
(
0, σ2) .

Let us still assume that f (x) is a Gaussian process.
Then,

Cov(y (i), y (j)) = Cov
(

f
(

x(i)
)
+ ϵ(i), f

(
x(j)

)
+ ϵ(j)

)
= Cov

(
f
(

x(i)
)
, f

(
x(j)

))
+ 2 · Cov

(
f
(

x(i)
)
, ϵ(j)

)
+ Cov

(
ϵ(i), ϵ(j)

)
= k

(
x(i), x(j)

)
+ σ2δij .

σ2 is called nugget.
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NOISY GAUSSIAN PROCESS / 3

Let us now derive the predictive distribution for the case of noisy
observations.

The prior distribution of y , assuming that f is modeled by a
Gaussian process is then

y =


y (1)

y (2)

...
y (n)

 ∼ N
(
m,K + σ2In

)
,

with

m :=
(

m
(

x(i)
))

i
, K :=

(
k
(

x(i), x(j)
))

i,j
.
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NOISY GAUSSIAN PROCESS / 4

We distinguish again between

observed training points X, y, and
unobserved test inputs X∗ with unobserved values f ∗

and get [
y
f ∗

]
∼ N

(
0,
[

K + σ2In K∗
KT
∗ K∗∗

])
.
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NOISY GAUSSIAN PROCESS / 5

Similarly to the noise-free case, we condition according to the rule
of conditioning for Gaussians to get the posterior distribution for
the test outputs f ∗ at X∗:

f ∗ | X∗,X, y ∼ N (mpost,K post).

with

mpost = KT
∗
(
K + σ2 · I

)−1
y

K post = K∗∗ − KT
∗
(
K + σ2 · I

)−1
K∗,

This converts back to the noise-free formula if σ2 = 0.
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NOISY GAUSSIAN PROCESS / 6

The noisy Gaussian process is not an interpolator any more.

A larger nugget term leads to a wider “band” around the observed
training points.

The nugget term is estimated during training.
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After observing the training points (red), we have a nugget−band around the oberved points. 
 (k(x,x') is the squared exponential)
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Decision Theory for Gaussian Processes
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RISK MINIMIZATION FOR GAUSSIAN PROCESSES

In machine learning, we learned about risk minimization. We usually
choose a loss function and minimize the empirical risk

Remp(f ) :=
n∑

i=1

L
(

y (i), f
(

x(i)
))

as an approximation to the theoretical risk

R(f ) := Exy [L (y , f (x))] =
∫

L (y , f (x)) dPxy .

How does the theory of Gaussian processes fit into this theory?

What if we want to make a prediction which is optimal w.r.t. a
certain loss function?
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RISK MINIMIZATION FOR GAUSSIAN PROCESSES
/ 2

The theory of Gaussian process gives us a posterior distribution

p(y | D)

If we now want to make a prediction at a test point x∗, we
approximate the theoretical risk in a different way, by using the
posterior distribution:

R(y∗ | x∗) ≈
∫

L(ỹ∗, y∗)p(ỹ∗ | x∗,D)dỹ∗.

The optimal prediciton w.r.t the loss function is then:

ŷ∗|x∗ = argmin
y∗

R(y∗ | x∗).
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