Introduction to Machine Learning

Gaussian Processes Covariance functions for GPs

X X X

Learning goals

- Covariance functions encode key assumptions about the GP
- Know common covariance functions like squared exponential and Matérn

COVARIANCE FUNCTION OF A GP

The marginalization property of the Gaussian process implies that for any finite set of input values, the corresponding vector of function values is Gaussian:

$$
\textbf{\textit{f}}=\left[f\left(\textbf{x}^{(1)}\right),...,f\left(\textbf{x}^{(n)}\right)\right]\sim\mathcal{N}\left(\textbf{\textit{m}},\textbf{\textit{K}}\right),
$$

- The covariance matrix **K** is constructed based on the chosen inputs $\{ {\bf x}^{(1)},...,{\bf x}^{(n)} \}$.
- Entry K_{ij} is computed by $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$.
- Technically, for every choice of inputs $\{ \mathbf{x}^{(1)},...,\mathbf{x}^{(n)} \}$, K needs to be positive semi-definite in order to be a valid covariance matrix.
- A function *k*(., .) satisfying this property is called **positive definite**.

 $\overline{\mathbf{X}}$

COVARIANCE FUNCTION OF A GP / 2

• Recall, the purpose of the covariance function is to control to which degree the following is fulfilled:

> If two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)}$ are close in \mathcal{X} -space, their function values *f*(**x** (*i*)), *f*(**x** (*j*)) should be close (**correlated**!) in $\mathcal Y$ -space.

Closeness of two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)}$ in input space \mathcal{X} is measured in terms of $\boldsymbol{d} = \mathbf{x}^{(i)} - \mathbf{x}^{(j)}$:

$$
k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = k(\mathbf{d})
$$

COVARIANCE FUNCTION OF A GP: EXAMPLE

- Let $f(\mathbf{x})$ be a GP with $k(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{2})$ $\frac{1}{2}$ $||d||^2$) with *d* **= x** − **x**['].
- Consider two points $x^{(1)} = 3$ and $x^{(2)} = 2.5$.
- If you want to know how correlated their function values are, compute their correlation!

Covariance Function

COVARIANCE FUNCTION OF A GP: EXAMPLE

Assume we observed a value $y^{(1)} = -0.8$, the value of $y^{(2)}$ should be close under the assumption of the above Gaussian process.

COVARIANCE FUNCTION OF A GP: EXAMPLE

- Let us compare another point $x^{(3)}$ to the point $x^{(1)}$
- We again compute their correlation
- Their function values are not very much correlated; $y^{(1)}$ and $y^{(3)}$ might be far away from each other

COVARIANCE FUNCTIONS

There are three types of commonly used covariance functions:

 $k(.,.)$ is called stationary if it is as a function of $\boldsymbol{d} = \boldsymbol{x} - \boldsymbol{x}'$, we write *k*(*d*).

Stationarity is invariance to translations in the input space:

- $k(x, x + d) = k(0, d)$
- $k(.,.)$ is called isotropic if it is a function of $r = ||\mathbf{x} \mathbf{x}'||$, we write *k*(*r*). Isotropy is invariance to rotations of the input space and implies stationarity.
- $k(.,.)$ is a dot product covariance function if k is a function of $\boldsymbol{x}^T\boldsymbol{x}'$

COMMONLY USED COVARIANCE FUNCTIONS

X $\times\overline{\times}$

 $K_{\nu}(\cdot)$ is the modified Bessel function of the second kind.

COMMONLY USED COVARIANCE FUNCTIONS / 2

- Random functions drawn from Gaussian processes with a Squared Exponential Kernel (left), Polynomial Kernel (middle), and a Matérn Kernel (right, $\ell = 1$).
- The length-scale hyperparameter determines the "wiggliness" of the function. \bullet
- \bullet For Matérn, the ν parameter determines how differentiable the process is.

SQUARED EXPONENTIAL COVARIANCE FUNCTION

The squared exponential function is one of the most commonly used covariance functions.

$$
k(\mathbf{x}, \mathbf{x}') = \exp\bigg(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\ell^2}\bigg).
$$

 \times \times

Properties:

- It depends merely on the distance $r = ||\mathbf{x} \mathbf{x}'|| \rightarrow$ isotropic and stationary.
- Infinitely differentiable \rightarrow sometimes deemed unrealistic for modeling most of the physical processes.

CHARACTERISTIC LENGTH-SCALE

$$
k(\mathbf{x},\mathbf{x}') = \exp\left(-\frac{1}{2\ell^2}\|\mathbf{x} - \mathbf{x}'\|^2\right)
$$

 ℓ is called **characteristic length-scale**. Loosely speaking, the characteristic length-scale describes how far you need to move in input space for the function values to become uncorrelated. Higher ℓ induces smoother functions, lower ℓ induces more wiggly functions.

 $\overline{\mathbf{X}}$

CHARACTERISTIC LENGTH-SCALE / 2

For $p > 2$ dimensions, the squared exponential can be parameterized:

$$
k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2} (\mathbf{x} - \mathbf{x}')^\top \mathbf{M} (\mathbf{x} - \mathbf{x}')\right)
$$

Possible choices for the matrix *M* include

$$
M_1 = \ell^{-2}I
$$
 $M_2 = diag(\ell)^{-2}$ $M_3 = \Gamma\Gamma^{T} + diag(\ell)^{-2}$

where ℓ is a *p*-vector of positive values and Γ is a $p \times k$ matrix.

The 2nd (and most important) case can also be written as

$$
k(\mathbf{d}) = \exp\left(-\frac{1}{2}\sum_{j=1}^p \frac{d_j^2}{l_j^2}\right)
$$

CHARACTERISTIC LENGTH-SCALE / 3

What is the benefit of having an individual hyperparameter ℓ_i for each dimension?

- The ℓ_1, \ldots, ℓ_p hyperparameters play the role of **characteristic length-scales**.
- Loosely speaking, ℓ*ⁱ* describes how far you need to move along axis *i* in input space for the function values to be uncorrelated.
- Such a covariance function implements **automatic relevance determination** (ARD), since the inverse of the length-scale ℓ_i determines the relevancy of input feature *i* to the regression.
- If ℓ_i is very large, the covariance will become almost independent of that input, effectively removing it from inference.
- If the features are on different scales, the data can be automatically **rescaled** by estimating ℓ_1, \ldots, ℓ_p

X X

CHARACTERISTIC LENGTH-SCALE / 4

For the first plot, we have chosen $M = I$: the function varies the same in all directions. The second plot is for $\textit{M} = \text{diag}(\ell)^{-2}$ and $\ell = (1,3)$: The function varies less rapidly as a function of x_2 than x_1 as the length-scale for x_1 is less. In the third plot $\pmb{M} = \mathsf{\Gamma} \mathsf{\Gamma}^{\mathsf{T}} + \mathsf{diag}(\pmb{\ell})^{-2}$ for $\mathsf{\Gamma} = (1,-1)^{\top}$ and $\ell = (6,6)^{\top}.$ Here $\mathsf{\Gamma}$ gives the direction of the most rapid variation. (Image from Rasmussen & Williams, 2006)