
Introduction to Machine Learning

Gaussian Processes
Covariance functions for GPs

Learning goals
Covariance functions encode key
assumptions about the GP

Know common covariance functions
like squared exponential and Matérn



COVARIANCE FUNCTION OF A GP

The marginalization property of the Gaussian process implies that for
any finite set of input values, the corresponding vector of function
values is Gaussian:

f =
[
f
(

x(1)
)
, ..., f

(
x(n)

)]
∼ N (m,K ) ,

The covariance matrix K is constructed based on the chosen
inputs

{
x(1), ..., x(n)

}
.

Entry K ij is computed by k
(
x(i), x(j)

)
.

Technically, for every choice of inputs
{

x(1), ..., x(n)
}

, K needs to
be positive semi-definite in order to be a valid covariance matrix.

A function k(., .) satisfying this property is called positive definite.
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COVARIANCE FUNCTION OF A GP / 2

Recall, the purpose of the covariance function is to control to
which degree the following is fulfilled:

If two points x(i), x(j) are close in X -space, their function
values f (x(i)), f (x(j)) should be close (correlated!) in
Y-space.

Closeness of two points x(i), x(j) in input space X is measured in
terms of d = x(i) − x(j):

k(x(i), x(j)) = k(d)
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COVARIANCE FUNCTION OF A GP: EXAMPLE

Let f (x) be a GP with k(x, x′) = exp(−1
2∥d∥2) with d = x − x′.

Consider two points x(1) = 3 and x(2) = 2.5.

If you want to know how correlated their function values are,
compute their correlation!
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COVARIANCE FUNCTION OF A GP: EXAMPLE

Assume we observed a value y (1) = −0.8, the value of y (2) should
be close under the assumption of the above Gaussian process.
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COVARIANCE FUNCTION OF A GP: EXAMPLE

Let us compare another point x(3) to the point x(1)

We again compute their correlation

Their function values are not very much correlated; y (1) and y (3)

might be far away from each other

high 
 correlation 
 of y values

high 
 correlation 
 of y values

low 
 correlation 
 of y values

low 
 correlation 
 of y values

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4
d

k(
d)

Covariance Function

x3x1

d = 0.5

y1

x2

y2

y3

−2

−1

0

1

2

0 2 4 6
x

f(
x)

© Introduction to Machine Learning – 5 / 13



COVARIANCE FUNCTIONS

There are three types of commonly used covariance functions:

k(., .) is called stationary if it is as a function of d = x − x ′, we
write k(d).
Stationarity is invariance to translations in the input space:
k(x , x + d) = k(0,d)

k(., .) is called isotropic if it is a function of r = ∥x − x ′∥, we write
k(r).
Isotropy is invariance to rotations of the input space and implies
stationarity.

k(., .) is a dot product covariance function if k is a function of xT x ′
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COMMONLY USED COVARIANCE FUNCTIONS

Name k(x , x ′)

constant σ2
0

linear σ2
0 + xT x ′

polynomial (σ2
0 + xT x ′)p

squared exponential exp(−∥x−x ′∥2

2ℓ2 )

Matérn 1
2νΓ(ν)

(√
2ν
ℓ

∥x − x ′∥
)ν

Kν

(√
2ν
ℓ

∥x − x ′∥
)

exponential exp
(
−∥x−x ′∥

ℓ

)
Kν(·) is the modified Bessel function of the second kind.
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COMMONLY USED COVARIANCE FUNCTIONS / 2
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Random functions drawn from Gaussian processes with a Squared Exponential
Kernel (left), Polynomial Kernel (middle), and a Matérn Kernel (right, ℓ = 1).

The length-scale hyperparameter determines the “wiggliness” of the function.

For Matérn, the ν parameter determines how differentiable the process is.
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SQUARED EXPONENTIAL COVARIANCE
FUNCTION

The squared exponential function is one of the most commonly used
covariance functions.

k(x, x′) = exp

(
−∥x − x′∥2

2ℓ2

)
.

Properties:

It depends merely on the distance r = ∥x − x′∥ → isotropic and
stationary.

Infinitely differentiable → sometimes deemed unrealistic for
modeling most of the physical processes.
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CHARACTERISTIC LENGTH-SCALE

k(x, x′) = exp

(
− 1

2ℓ2 ∥x − x′∥2
)

ℓ is called characteristic length-scale. Loosely speaking, the
characteristic length-scale describes how far you need to move in input
space for the function values to become uncorrelated. Higher ℓ induces
smoother functions, lower ℓ induces more wiggly functions.
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CHARACTERISTIC LENGTH-SCALE / 2

For p ≥ 2 dimensions, the squared exponential can be parameterized:

k(x, x′) = exp

(
−1

2

(
x − x′

)⊤ M
(
x − x′

))
Possible choices for the matrix M include

M1 = ℓ−2I M2 = diag(ℓ)−2 M3 = ΓΓ⊤ + diag(ℓ)−2

where ℓ is a p-vector of positive values and Γ is a p × k matrix.

The 2nd (and most important) case can also be written as

k(d) = exp

(
−1

2

p∑
j=1

d2
j

l2j

)

© Introduction to Machine Learning – 11 / 13



CHARACTERISTIC LENGTH-SCALE / 3

What is the benefit of having an individual hyperparameter ℓi for each
dimension?

The ℓ1, . . . , ℓp hyperparameters play the role of characteristic
length-scales.

Loosely speaking, ℓi describes how far you need to move along
axis i in input space for the function values to be uncorrelated.

Such a covariance function implements automatic relevance
determination (ARD), since the inverse of the length-scale ℓi

determines the relevancy of input feature i to the regression.

If ℓi is very large, the covariance will become almost independent
of that input, effectively removing it from inference.

If the features are on different scales, the data can be
automatically rescaled by estimating ℓ1, . . . , ℓp

© Introduction to Machine Learning – 12 / 13



CHARACTERISTIC LENGTH-SCALE / 4

For the first plot, we have chosen M = I : the function varies the same
in all directions. The second plot is for M = diag(ℓ)−2 and ℓ = (1, 3):
The function varies less rapidly as a function of x2 than x1 as the
length-scale for x1 is less. In the third plot M = ΓΓT + diag(ℓ)−2 for
Γ = (1,−1)⊤ and ℓ = (6, 6)⊤. Here Γ gives the direction of the most
rapid variation. (Image from Rasmussen & Williams, 2006)
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