Introduction to Machine Learning

Gaussian Processes
Covariance functions for GPs

lt %”!% Learning goals
= @ Covariance functions encode key
assumptions about the GP

‘ ‘ A @ Know common covariance functions
o L v ’f : like squared exponential and Matérn

‘‘‘‘‘‘
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COVARIANCE FUNCTION OF A GP

The marginalization property of the Gaussian process implies that for
any finite set of input values, the corresponding vector of function
values is Gaussian:

f— [f <x(1)) ot (x(”)>] ~ N (m,K),
@ The covariance matrix K is constructed based on the chosen
inputs {x(1), ..., x("}.
e Entry Kj; is computed by k (x(), x1)).

e Technically, for every choice of inputs {x("), ..., x("}, K needs to
be positive semi-definite in order to be a valid covariance matrix.

@ A function k(., .) satisfying this property is called positive definite.
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COVARIANCE FUNCTION OF A GP /2

@ Recall, the purpose of the covariance function is to control to
which degree the following is fulfilled:

If two points x(), x) are close in X-space, their function
values f(x(0), f(x)) should be close (correlated!) in
Y-space.

@ Closeness of two points x(), xU) in input space X is measured in
terms of d = x() — x();

k(x(i)’ x(/)) — k(d)
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COVARIANCE FUNCTION OF A GP: EXAMPLE

@ Let f(x) be a GP with k(x,x") = exp(—3|d||?) with d = x — X'.
@ Consider two points x(") = 3 and x(2) = 2.5.

@ If you want to know how correlated their function values are,
compute their correlation!

Covariance Function
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COVARIANCE FUNCTION OF A GP: EXAMPLE

@ Assume we observed a value y“) = —0.8, the value of y(2) should
be close under the assumption of the above Gaussian process.

Covariance Function
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COVARIANCE FUNCTION OF A GP: EXAMPLE

@ Let us compare another point x(3) to the point x()
@ We again compute their correlation

@ Their function values are not very much correlated; y(!) and y(®)
might be far away from each other

Covariance Function
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COVARIANCE FUNCTIONS

There are three types of commonly used covariance functions:

® K(.,.) is called stationary if it is as a function of d = x — x/, we
write k(d).
Stationarity is invariance to translations in the input space:
k(x,x +d) = k(0,d)

@ k(.,.) is called isotropic if it is a function of r = ||x — x’||, we write
k(r).
Isotropy is invariance to rotations of the input space and implies
stationarity.

@ k(.,.)is a dot product covariance function if k is a function of x7 x’
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COMMONLY USED COVARIANCE FUNCTIONS

squared exponential
Matérn

exponential

Name k(x,x')
constant o5
linear o2 +xTx
polynomial (02 + xTx')P
0

_y/I2
eXp(_sze); I )

exp (_ HH'H>
¢

st (Elx - x1) . (E

I — x/n)

K. (+) is the modified Bessel function of the second kind.
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COMMONLY USED COVARIANCE FUNCTIONS /2

Squared Exponential Covariance F Polynomial Covariance Function Matérn Covariance Functions

Length Scale 01 — 1 10 Degree 11— 2 3 v 05 — 2 10

@ Random functions drawn from Gaussian processes with a Squared Exponential
Kernel (left), Polynomial Kernel (middle), and a Matérn Kernel (right, ¢ = 1).

@ The length-scale hyperparameter determines the “wiggliness” of the function.

@ For Matérn, the v parameter determines how differentiable the process is.
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SQUARED EXPONENTIAL COVARIANCE
FUNCTION

The squared exponential function is one of the most commonly used
covariance functions.

_ y'l2
k(x,x') = exp<||x2€:|>.

Properties:

@ It depends merely on the distance r = ||x — x’|| — isotropic and
stationary.

@ Infinitely differentiable — sometimes deemed unrealistic for
modeling most of the physical processes.

Introduction to Machine Learning — 9/13

X X



CHARACTERISTIC LENGTH-SCALE

1
(xx) = exp (i 1x - x)

l is called characteristic length-scale. Loosely speaking, the
characteristic length-scale describes how far you need to move in input
space for the function values to become uncorrelated. Higher ¢ induces
smoother functions, lower ¢ induces more wiggly functions.

I=1 1=0.1
5.0+ 5.0
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CHARACTERISTIC LENGTH-SCALE /2

For p > 2 dimensions, the squared exponential can be parameterized:
/ 1 nT /
k(x,x") = exp 5 (x—x) M(x—x)
Possible choices for the matrix M include

M, = (21  M,=diag(¢)> Mz=TT" +diag(¢)>

where £ is a p-vector of positive values and " is a p X k matrix.

The 2nd (and most important) case can also be written as

K(d) = exp (-é zp: 75)

j=1 1
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CHARACTERISTIC LENGTH-SCALE /3

What is the benefit of having an individual hyperparameter ¢; for each
dimension?

@ The /4, ..., ¢, hyperparameters play the role of characteristic
length-scales.

@ Loosely speaking, ¢; describes how far you need to move along
axis i in input space for the function values to be uncorrelated.

@ Such a covariance function implements automatic relevance
determination (ARD), since the inverse of the length-scale ¢;
determines the relevancy of input feature i to the regression.

@ If ¢; is very large, the covariance will become almost independent
of that input, effectively removing it from inference.

@ If the features are on different scales, the data can be
automatically rescaled by estimating /1, ..., ¢,
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CHARACTERISTIC LENGTH-SCALE /4

For the first plot, we have chosen M = I: the function varies the same
in all directions. The second plot is for M = diag(€) =2 and £ = (1, 3):
The function varies less rapidly as a function of x» than xy as the
length-scale for x; is less. In the third plot M = I'TT + diag(£) 2 for
F=(1,-1)T and £ = (6,6) . Here I' gives the direction of the most
rapid variation. (Image from Rasmussen & Williams, 2006)
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