Introduction to Machine Learning

Gaussian Processes
Bayesian Linear Model

MAP after observing 5 data points

Learning goals
@ Know the Bayesian linear model

2 g ‘ @ The Bayesian LM returns a
- : (posterior) distribution instead of a
point estimate

@ Know how to derive the posterior
distribution for a Bayesian LM
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REVIEW: THE BAYESIAN LINEAR MODEL

Let D = {(x(1), yM), ..., (x(, y(M)} be a training set of i.i.d.
observations from some unknown distribution.
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Lety = (y(I, ..., y(™)T and X € R"*P be the design matrix where the
i-th row contains vector x(/)
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REVIEW: THE BAYESIAN LINEAR MODEL /2

The linear regression model is defined as

y=f(x)+e=0"x+¢

or on the data:

yi) = f(x(’)) + e =0TxD + 0 forie {1,...,n}

We now assume (from a Bayesian perspective) that also our parameter
vector @ is stochastic and follows a distribution. The observed values
y) differ from the function values f (x()) by some additive noise, which
is assumed to be i.i.d. Gaussian

) ~ N(0,0?)

and independent of x and 6.
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REVIEW: THE BAYESIAN LINEAR MODEL /3

Let us assume we have prior beliefs about the parameter 6 that are
represented in a prior distribution 6 ~ N(0, 721,).

Whenever data points are observed, we update the parameters’ prior
distribution according to Bayes’ rule

likelihood  prior

(y[X,6) q(6)
P ,9)q
p(olx,y) = 2 :
—_—— p(y[X)
posterior N——
marginal
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REVIEW: THE BAYESIAN LINEAR MODEL /4

The posterior distribution of the parameter @ is again normal distributed
(the Gaussian family is self-conjugate):

0|X,y~N(2A Xy, A" ")
with A := o 2XTX + L1,

Note: If the posterior distribution p(@ | X,y) are in the same probability distribution
family as the prior q(8) w.r.t. a specific likelihood function p(y | X, 8), they are called
conjugate distributions. The prior is then called a conjugate prior for the likelihood.
The Gaussian family is self-conjugate: Choosing a Gaussian prior for a Gaussian
Likelihood ensures that the posterior is Gaussian.
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REVIEW: THE BAYESIAN LINEAR MODEL /5

No data points observed

Prior 8~N(0, 1)
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REVIEW: THE BAYESIAN LINEAR MODEL /6

MAP after observing 5 data points

Posterior of 6
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REVIEW: THE BAYESIAN LINEAR MODEL /7

MAP after observing 10 data points

Posterior of 6
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REVIEW: THE BAYESIAN LINEAR MODEL /s

Posterior of 6

MAP after observing 20 data points
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REVIEW: THE BAYESIAN LINEAR MODEL /9
Proof: x

We want to show that

@ for a Gaussian prior on 8 ~ N(0, 721,) x
@ for a Gaussian Likelihood y | X,0 ~ N(XT 8, 5°I,)
the resulting posterior is Gaussian A(c 2A~ "Xy, A™") with A := o °X " X+ /. x x

Plugging in Bayes’ rule and multiplying out yields

POIY) o p(YX.0)a(6) x x| 55 (y ~ X6) (v~ X6) — 515076)

= exp —% o %y'y —20%y"X0+o%0"X" X0 +T—29T0>}

doesn't depend on 6

x  exp —% <a*29TxTxe +772076 - 2072yTX9)}

= €X

,%OT (aiszX + Tﬁzlp) 0+ UfzyTXO]

©

=A

This expression resembles a normal density - except for the term in red!
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REVIEW: THE BAYESIAN LINEAR MODEL /10

Note: We need not worry about the normalizing constant since its mere role is to
convert probability functions to density functions with a total probability of one.
We subtract a (not yet defined) constant ¢ while compensating for this change by
adding the respective terms (“adding 0”), emphasized in green:

p(OIX,y) o exp{f%(e )TA@ <) + +a*2yTx9]

doesn't depend on 6
x exp{—%(O )TA@B—c) +a*2y7xe]

If we choose ¢ such that —cT A + o2y ' X8 = 0, the posterior is normal with mean ¢
and covariance matrix A~". Taking into account that A is symmetric, this is if we choose

a’zyTX =c'A
s oy XAT'=c'
& c=0 A X"y

as claimed.
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REVIEW: THE BAYESIAN LINEAR MODEL /11
Based on the posterior distribution

0| X,y~N(2AXTy,A™")
we can derive the predictive distribution for a new observations x,. The
predictive distribution for the Bayesian linear model, i.e. the distribution
of 0'x,, is
Ve | Xy, %, ~ N (07 2y XA 'x,, x] A~ "x,)

(applying the rules for linear transformations of Gaussians).
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REVIEW: THE BAYESIAN LINEAR MODEL /12

MAP after observing 5 data points
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For every test input x.., we get a distribution over the prediction y.. In particular, we get
a posterior mean (orange) and a posterior variance (grey region equals +/— two times
standard deviation).
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REVIEW: THE BAYESIAN LINEAR MODEL /13

MAP after observing 10 data points
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For every test input x.., we get a distribution over the prediction y.. In particular, we get
a posterior mean (orange) and a posterior variance (grey region equals +/— two times
standard deviation).
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REVIEW: THE BAYESIAN LINEAR MODEL /14

MAP after observing 20 data points

25 00 25 50 75
X

For every test input x.., we get a distribution over the prediction y.. In particular, we get
a posterior mean (orange) and a posterior variance (grey region equals +/— two times
standard deviation).
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SUMMARY: THE BAYESIAN LINEAR MODEL

@ By switching to a Bayesian perspective, we do not only have point
estimates for the parameter 0, but whole distributions
@ From the posterior distribution of 8, we can derive a predictive
distribution for y, = 6 " x,.
@ We can perform online updates: Whenever datapoints are
observed, we can update the posterior distribution of 6
Next, we want to develop a theory for general shape functions, and not
only for linear function.
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