
Introduction to Machine Learning

Gaussian Processes
Bayesian Linear Model
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Learning goals
Know the Bayesian linear model

The Bayesian LM returns a
(posterior) distribution instead of a
point estimate

Know how to derive the posterior
distribution for a Bayesian LM



REVIEW: THE BAYESIAN LINEAR MODEL

Let D =
{
(x(1), y (1)), ..., (x(n), y (n))

}
be a training set of i.i.d.

observations from some unknown distribution.
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Let y = (y (1), ..., y (n))⊤ and X ∈ Rn×p be the design matrix where the
i-th row contains vector x(i).
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REVIEW: THE BAYESIAN LINEAR MODEL / 2

The linear regression model is defined as

y = f (x) + ϵ = θT x + ϵ

or on the data:

y (i) = f
(

x(i)
)
+ ϵ(i) = θT x(i) + ϵ(i), for i ∈ {1, . . . , n}

We now assume (from a Bayesian perspective) that also our parameter
vector θ is stochastic and follows a distribution. The observed values
y (i) differ from the function values f

(
x(i)

)
by some additive noise, which

is assumed to be i.i.d. Gaussian

ϵ(i) ∼ N (0, σ2)

and independent of x and θ.
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REVIEW: THE BAYESIAN LINEAR MODEL / 3

Let us assume we have prior beliefs about the parameter θ that are
represented in a prior distribution θ ∼ N (0, τ 2Ip).

Whenever data points are observed, we update the parameters’ prior
distribution according to Bayes’ rule

p(θ|X, y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y|X,θ)

prior︷︸︸︷
q(θ)

p(y|X)︸ ︷︷ ︸
marginal

.
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REVIEW: THE BAYESIAN LINEAR MODEL / 4

The posterior distribution of the parameter θ is again normal distributed
(the Gaussian family is self-conjugate):

θ | X, y ∼ N (σ−2A−1X⊤y,A−1)

with A := σ−2X⊤X + 1
τ 2 Ip.

Note: If the posterior distribution p(θ | X, y) are in the same probability distribution

family as the prior q(θ) w.r.t. a specific likelihood function p(y | X,θ), they are called

conjugate distributions. The prior is then called a conjugate prior for the likelihood.

The Gaussian family is self-conjugate: Choosing a Gaussian prior for a Gaussian

Likelihood ensures that the posterior is Gaussian.
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REVIEW: THE BAYESIAN LINEAR MODEL / 5
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REVIEW: THE BAYESIAN LINEAR MODEL / 6
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REVIEW: THE BAYESIAN LINEAR MODEL / 7
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REVIEW: THE BAYESIAN LINEAR MODEL / 8
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REVIEW: THE BAYESIAN LINEAR MODEL / 9

Proof:
We want to show that

for a Gaussian prior on θ ∼ N (0, τ 2Ip)

for a Gaussian Likelihood y | X,θ ∼ N (X⊤θ, σ2In)

the resulting posterior is Gaussian N (σ−2A−1X⊤y,A−1) with A := σ−2X⊤X + 1
τ2 Ip.

Plugging in Bayes’ rule and multiplying out yields

p(θ|X, y) ∝ p(y|X,θ)q(θ) ∝ exp

[
− 1

2σ2
(y − Xθ)⊤(y − Xθ)− 1

2τ 2
θ⊤θ

]
= exp

[
−1

2

(
σ−2y⊤y︸ ︷︷ ︸

doesn’t depend on θ

−2σ−2y⊤Xθ + σ−2θ⊤X⊤Xθ + τ−2θ⊤θ

)]

∝ exp

[
−1

2

(
σ−2θ⊤X⊤Xθ + τ−2θ⊤θ − 2σ−2y⊤Xθ

)]
= exp

[
−1

2
θ⊤

(
σ−2X⊤X + τ−2Ip

)
︸ ︷︷ ︸

:=A

θ + σ−2y⊤Xθ
]

This expression resembles a normal density - except for the term in red!
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REVIEW: THE BAYESIAN LINEAR MODEL / 10

Note: We need not worry about the normalizing constant since its mere role is to
convert probability functions to density functions with a total probability of one.
We subtract a (not yet defined) constant c while compensating for this change by
adding the respective terms (“adding 0”), emphasized in green:

p(θ|X, y) ∝ exp

[
−1

2
(θ−c)⊤A(θ−c)−c⊤Aθ +

1
2

c⊤Ac︸ ︷︷ ︸
doesn’t depend on θ

+σ−2y⊤Xθ
]

∝ exp

[
−1

2
(θ−c)⊤A(θ−c)−c⊤Aθ + σ−2y⊤Xθ

]
If we choose c such that −c⊤Aθ+ σ−2y⊤Xθ = 0, the posterior is normal with mean c
and covariance matrix A−1. Taking into account that A is symmetric, this is if we choose

σ−2y⊤X = c⊤A

⇔ σ−2y⊤XA−1 = c⊤

⇔ c = σ−2A−1X⊤y

as claimed.
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REVIEW: THE BAYESIAN LINEAR MODEL / 11

Based on the posterior distribution

θ | X, y ∼ N (σ−2A−1X⊤y,A−1)

we can derive the predictive distribution for a new observations x∗. The
predictive distribution for the Bayesian linear model, i.e. the distribution
of θ⊤x∗, is

y∗ | X, y, x∗ ∼ N (σ−2y⊤XA−1x∗, x⊤∗ A−1x∗)

(applying the rules for linear transformations of Gaussians).
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REVIEW: THE BAYESIAN LINEAR MODEL / 12
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For every test input x∗, we get a distribution over the prediction y∗. In particular, we get

a posterior mean (orange) and a posterior variance (grey region equals +/− two times

standard deviation).
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REVIEW: THE BAYESIAN LINEAR MODEL / 13
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REVIEW: THE BAYESIAN LINEAR MODEL / 14
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SUMMARY: THE BAYESIAN LINEAR MODEL

By switching to a Bayesian perspective, we do not only have point
estimates for the parameter θ, but whole distributions

From the posterior distribution of θ, we can derive a predictive
distribution for y∗ = θ⊤x∗.

We can perform online updates: Whenever datapoints are
observed, we can update the posterior distribution of θ

Next, we want to develop a theory for general shape functions, and not
only for linear function.
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