Introduction to Machine Learning

Gaussian Processes Basics

X \times \times

 $f(x)$ $\sim \mathcal{N}(\mu, \mathbf{\Sigma})$

Learning goals

- GPs model distributions over functions
- The marginalization property makes this distribution easily tractable
- GPs are fully specified by mean and covariance function
- GPs are indexed families

WEIGHT-SPACE VIEW

- \bullet Until now we considered a hypothesis space $\mathcal H$ of parameterized functions $f(\mathbf{x} \mid \theta)$ (in particular, the space of linear functions).
- **•** Using Bayesian inference, we derived distributions for θ after having observed data D.
- Prior believes about the parameter are expressed via a prior distribution $q(\theta)$, which is updated according to Bayes' rule

Let us change our point of view:

- **Instead of "searching" for a parameter** θ **in the parameter space,** we directly search in a space of "allowed" functions H .
- We still use Bayesian inference, but instead specifying a prior distribution over a parameter, we specify a prior distribution **over functions** and update it according to the data points we have observed.

Intuitively, imagine we could draw a huge number of functions from some prior distribution over functions ^(*).

Functions drawn from a Gaussian process prior

(∗) We will see in a minute how distributions over functions can be specified.

X

 $\times\overline{\times}$

After observing some data points, we are only allowed to sample those functions, that are consistent with the data.

Posterior process after 1 observation

X $\times\overline{\times}$

After observing some data points, we are only allowed to sample those functions, that are consistent with the data.

Posterior process after 2 observations

X $\times\overline{\times}$

After observing some data points, we are only allowed to sample those functions, that are consistent with the data.

Posterior process after 3 observations

As we observe more and more data points, the variety of functions consistent with the data shrinks.

Posterior process after 4 observations

X $\times\overline{\times}$

Inutitively, there is something like "mean" and a "variance" of a distribution over functions.

Posterior process after 4 observations

X $\times\overline{\times}$

WEIGHT-SPACE VS. FUNCTION-SPACE VIEW

Weight-Space View Function-Space View Parameterize functions

Example: $f(\mathbf{x} \mid \theta) = \theta^{\top} \mathbf{x}$

Define distributions on θ Define distributions on *f*

Inference in parameter space Θ Inference in function space $\mathcal H$

Next, we will see how we can define distributions over functions mathematically.

[Distributions on Functions](#page-10-0)

For simplicity, let us consider functions with finite domains first.

Let $\mathcal{X}=\{\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n)}\}$ be a finite set of elements and \mathcal{H} the set of all functions from $\mathcal{X} \to \mathbb{R}$.

Since the domain of any $h(.) \in \mathcal{H}$ has only *n* elements, we can represent the function *h*(.) compactly as a *n*-dimensional vector

$$
\boldsymbol{h} = \left[h\left(\mathbf{x}^{(1)}\right), \ldots, h\left(\mathbf{x}^{(n)}\right)\right].
$$

Example 1: Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **two** points $\mathcal{X} = \{0, 1\}$.

Examples for functions that live in this space:

Example 1: Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **two** points $\mathcal{X} = \{0, 1\}$.

Examples for functions that live in this space:

Example 1: Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **two** points $\mathcal{X} = \{0, 1\}$.

Examples for functions that live in this space:

Example 2: Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **five** points $\mathcal{X} = \{0, 0.25, 0.5, 0.75, 1\}.$

Examples for functions that live in this space:

Example 2: Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **five** points $\mathcal{X} = \{0, 0.25, 0.5, 0.75, 1\}.$

Examples for functions that live in this space:

Example 2: Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **five** points $\mathcal{X} = \{0, 0.25, 0.5, 0.75, 1\}.$

Examples for functions that live in this space:

Example 3: Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **ten** points.

Examples for functions that live in this space:

Example 3: Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **ten** points.

Examples for functions that live in this space:

Example 3: Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **ten** points.

Examples for functions that live in this space:

Х $\times\overline{\times}$

DISTRIBUTIONS ON DISCRETE FUNCTIONS

One natural way to specify a probability function on discrete function $h \in \mathcal{H}$ is to use the vector representation

$$
\boldsymbol{h}=\left[h\left(\boldsymbol{x}^{\left(1\right)}\right),h\left(\boldsymbol{x}^{\left(2\right)}\right),\ldots,h\left(\boldsymbol{x}^{\left(n\right)}\right)\right]
$$

 \times \times

of the function.

Let us see *h* as a *n*-dimensional random variable. We will further assume the following normal distribution:

$$
h \sim \mathcal{N}(m, K).
$$

Note: For now, we set $m = 0$ and take the covariance matrix **K** as given. We will see later how they are chosen / estimated.

Example 1 (continued): Let $h: \mathcal{X} \rightarrow \mathcal{Y}$ be a function that is defined on **two** points X . We sample functions by sampling from a two-dimensional normal variable

−2 −1 Ω 1 2 3 0 1 x h(x) Sample Function 1, $n = 2$ −2 −1 0 1 2 3 −2 −1 0 1 2 3 $h₁$ \tilde{e} Density of a 2−D Gaussian In this example, $m = (0, 0)$ and $K = \begin{pmatrix} 1 & 0.5 \ 0.5 & 1 \end{pmatrix}$.

h = $[h(1), h(2)] \sim \mathcal{N}(m, K)$

Example 1 (continued): Let $h: \mathcal{X} \rightarrow \mathcal{Y}$ be a function that is defined on **two** points X . We sample functions by sampling from a two-dimensional normal variable

$$
\mathbf{h}=[h(1),h(2)]\sim\mathcal{N}(\mathbf{m},\mathbf{K})
$$

Example 1 (continued): Let $h: \mathcal{X} \rightarrow \mathcal{Y}$ be a function that is defined on **two** points X . We sample functions by sampling from a two-dimensional normal variable

$$
\boldsymbol{h} = [h(1), h(2)] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K})
$$

Example 2 (continued): Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **five** points. We sample functions by sampling from a five-dimensional normal variable

h = [*h*(1), *h*(2), *h*(3), *h*(4), *h*(5)] ∼ $\mathcal{N}(m, K)$

Example 2 (continued): Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **five** points. We sample functions by sampling from a five-dimensional normal variable

$$
h = [h(1), h(2), h(3), h(4), h(5)] \sim \mathcal{N}(m, K)
$$

Example 2 (continued): Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **five** points. We sample functions by sampling from a five-dimensional normal variable

$$
h = [h(1), h(2), h(3), h(4), h(5)] \sim \mathcal{N}(m, K)
$$

Example 3 (continued): Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **ten** points. We sample functions by sampling from ten-dimensional normal variable

$$
\boldsymbol{h} = [h(1), h(2), \ldots, h(10)] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K})
$$

0.4 0.6 0.8 1.0

Example 3 (continued): Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **ten** points. We sample functions by sampling from ten-dimensional normal variable

$$
\boldsymbol{h} = [h(1), h(2), \ldots, h(10)] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K})
$$

Example 3 (continued): Let us consider $h: \mathcal{X} \rightarrow \mathcal{Y}$ where the input space consists of **ten** points. We sample functions by sampling from ten-dimensional normal variable

$$
\begin{array}{c}\n\bigcirc \\
\times \\
\hline\n\end{array}
$$

$$
\boldsymbol{h} = [h(1), h(2), \ldots, h(10)] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K})
$$

ROLE OF THE COVARIANCE FUNCTION

Note that the covariance controls the "shape" of the drawn function. Consider two extreme cases where function values are

a) strongly correlated:
$$
K = \begin{pmatrix} 1 & 0.99 & \dots & 0.99 \\ 0.99 & 1 & \dots & 0.99 \\ 0.99 & 0.99 & \ddots & 0.99 \\ 0.99 & \dots & 0.99 & 1 \end{pmatrix}
$$

b) uncorrelated: $K = I$

ROLE OF THE COVARIANCE FUNCTION / 2

• "Meaningful" functions (on a numeric space \mathcal{X}) may be characterized by a spatial property:

> If two points $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)}$ are close in \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)}), f(\mathbf{x}^{(j)})$ should be close in $\mathcal{Y}\text{-space}.$

In other words: If they are close in \mathcal{X} -space, their functions values should be **correlated**!

We can enforce that by choosing a covariance function with

 K_{ij} high, if $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$ close.

ROLE OF THE COVARIANCE FUNCTION / 3

We can compute the entries of the covariance matrix by a function that is based on the distance between $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$, for example:

c) Spatial correlation:
$$
K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{1}{2}|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}|^2\right)
$$

Note: *k*(·, ·) is known as the **covariance function** or **kernel**. It will be studied in more detail later on.

 X \overline{O} \times

[Gaussian Processes](#page-34-0)

FROM DISCRETE TO CONTINUOUS FUNCTIONS

We defined distributions on functions with discrete domain by defining a Gaussian on the vector of the respective function values

 $\textsf{h} = [h(\textbf{x}^{(1)}), h(\textbf{x}^{(2)}), \ldots, h(\textbf{x}^{(n)})] \sim \mathcal{N}(\textsf{\textit{m}}, \textsf{\textit{K}})$

• We can do this for $n \to \infty$ (as "granular" as we want)

X

FROM DISCRETE TO CONTINUOUS FUNCTIONS

- No matter how large *n* is, we are still considering a function over a discrete domain.
- How can we extend our definition to functions with **continuous domain** $\mathcal{X} \subset \mathbb{R}$?

- Intuitively, a function *f* drawn from **Gaussian process** can be understood as an "infinite" long Gaussian random vector.
- It is unclear how to handle an "infinite" long Gaussian random vector!

 $\mathbf{\times}$

Thus, it is required that for **any finite set** of inputs $\{x^{(1)}, \ldots, x^{(n)}\} \subset \mathcal{X}$, the vector **f** has a Gaussian distribution

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right),
$$

with *m* and *K* being calculated by a mean function *m*(.) / covariance function *k*(., .).

This property is called **Marginalization Property**.

 $\mathbf{\times}$

Thus, it is required that for **any finite set** of inputs $\{x^{(1)}, \ldots, x^{(n)}\} \subset \mathcal{X}$, the vector **f** has a Gaussian distribution

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right),
$$

with *m* and *K* being calculated by a mean function *m*(.) / covariance function $k(.,.).$

This property is called **Marginalization Property**.

< ×

Thus, it is required that for **any finite set** of inputs $\{x^{(1)}, \ldots, x^{(n)}\} \subset \mathcal{X}$, the vector **f** has a Gaussian distribution

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right),
$$

with *m* and *K* being calculated by a mean function *m*(.) / covariance function $k(.,.).$

This property is called **Marginalization Property**.

 \mathbf{X}

GAUSSIAN PROCESSES

This intuitive explanation is formally defined as follows:

A function $f(\mathbf{x})$ is generated by a GP \mathcal{GP} $(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ if for any **finite** set of inputs $\{ \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \}$, the associated vector of function values $\textbf{\textit{f}}=(\textit{f}(\textbf{x}^{(1)}), \ldots, \textit{f}(\textbf{x}^{(n)}))$ has a Gaussian distribution

$$
\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right),
$$

with

$$
\mathbf{m} \hspace{2mm} := \hspace{2mm} \left(m \left(\mathbf{x}^{(i)} \right) \right)_i, \hspace{2mm} \mathbf{K} := \left(k \left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right) \right)_{i,j},
$$

where $m(\mathbf{x})$ is called mean function and $k(\mathbf{x}, \mathbf{x}')$ is called covariance function.

GAUSSIAN PROCESSES / 2

A GP is thus **completely specified** by its mean and covariance function

$$
m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]
$$

$$
k(\mathbf{x}, \mathbf{x}') = \mathbb{E}\left[(f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})]) (f(\mathbf{x}') - \mathbb{E}[f(\mathbf{x}')])\right]
$$

$$
\begin{array}{c}\n0 & \times \\
\hline\n0 & \times \\
\hline\n0 & \times\n\end{array}
$$

Note: For now, we assume $m(x) \equiv 0$. This is not necessarily a drastic limitation - thus it is common to consider GPs with a zero mean function.

SAMPLING FROM A GAUSSIAN PROCESS PRIOR

We can draw functions from a Gaussian process prior. Let us consider *f*(**x**) ∼ \mathcal{GP} (0, $k(\mathbf{x}, \mathbf{x}')$) with the squared exponential covariance function $(*)$

$$
k(\mathbf{x},\mathbf{x}') = \exp\left(-\frac{1}{2\ell^2}||\mathbf{x}-\mathbf{x}'||^2\right), \ \ \ell=1.
$$

This specifies the Gaussian process completely.

(∗) We will talk later about different choices of covariance functions.

SAMPLING FROM A GAUSSIAN PROCESS PRIOR / 2

To visualize a sample function, we

- choose a high number *n* (equidistant) points $\{ \mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \}$
- compute the corresponding covariance matrix $\mathbf{K} = \bigl(k\left(\mathbf{x}^{(i)},\mathbf{x}^{(j)}\right)\bigr)_{i,j}$ by plugging in all pairs $\mathbf{x}^{(i)},\mathbf{x}^{(j)}$
- sample from a Gaussian *f* ∼ N (**0**, *K*).

We draw 10 times from the Gaussian, to get 10 different samples.

SAMPLING FROM A GAUSSIAN PROCESS PRIOR / 3

Since we specified the mean function to be zero $m(\mathbf{x}) \equiv 0$, the drawn functions have zero mean.

X **XX**

X $X \times$

[Gaussian Processes as Indexed Family](#page-46-0)

GAUSSIAN PROCESSES AS AN INDEXED FAMILY

A Gaussian process is a special case of a **stochastic process** which is defined as a collection of random variables indexed by some index set (also called an **indexed family**). What does it mean?

An **indexed family** is a mathematical function (or "rule") to map indices $t \in \mathcal{T}$ to objects in \mathcal{S} .

Definition

A family of elements in S indexed by T (indexed family) is a surjective function

$$
\begin{array}{rcl} \texttt{s}: \mathcal{T} & \rightarrow & \mathcal{S} \\ & t & \mapsto & \texttt{s}_t = \texttt{s}(t) \end{array}
$$

 $\overline{}$

INDEXED FAMILY

Some simple examples for indexed families are:

INDEXED FAMILY /2

But the indexed set S can be something more complicated, for example functions or **random variables** (RV):

- $\mathcal{T} = \{1, \ldots, m\}$, Y_t 's are RVs: Indexed family is a random vector.
- $\mathcal{T} = \{1, \ldots, m\}$, Y_t 's are RVs: Indexed family is a stochastic process in discrete time
- $T = \mathbb{Z}^2$, Y_t 's are RVs: Indexed family is a 2D-random walk.

INDEXED FAMILY

- A Gaussian process is also an indexed family, where the random variables $f(\mathbf{x})$ are indexed by the input values $\mathbf{x} \in \mathcal{X}$.
- Their special feature: Any indexed (finite) random vector has a multivariate Gaussian distribution (which comes with all the nice properties of Gaussianity!).

Visualization for a one-dimensional $\mathcal X$

INDEXED FAMILY

- A Gaussian process is also an indexed family, where the random variables $f(\mathbf{x})$ are indexed by the input values $\mathbf{x} \in \mathcal{X}$.
- Their special feature: Any indexed (finite) random vector has a multivariate Gaussian distribution (which comes with all the nice properties of Gaussianity!).

Visualization for a two-dimensional \mathcal{X} .