
Introduction to Machine Learning

Gaussian Processes
Basics

Learning goals
GPs model distributions over
functions

The marginalization property makes
this distribution easily tractable

GPs are fully specified by mean and
covariance function

GPs are indexed families



WEIGHT-SPACE VIEW

Until now we considered a hypothesis space H of parameterized
functions f (x | θ) (in particular, the space of linear functions).

Using Bayesian inference, we derived distributions for θ after
having observed data D.

Prior believes about the parameter are expressed via a prior
distribution q(θ), which is updated according to Bayes’ rule

p(θ|X, y)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(y|X,θ)

prior︷︸︸︷
q(θ)

p(y|X)︸ ︷︷ ︸
marginal

.
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FUNCTION-SPACE VIEW

Let us change our point of view:

Instead of “searching” for a parameter θ in the parameter space,
we directly search in a space of “allowed” functions H.

We still use Bayesian inference, but instead specifying a prior
distribution over a parameter, we specify a prior distribution over
functions and update it according to the data points we have
observed.
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FUNCTION-SPACE VIEW / 2

Intuitively, imagine we could draw a huge number of functions from
some prior distribution over functions (∗).
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Functions drawn from a Gaussian process prior

(∗) We will see in a minute how distributions over functions can be specified.
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FUNCTION-SPACE VIEW / 3

After observing some data points, we are only allowed to sample those
functions, that are consistent with the data.
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FUNCTION-SPACE VIEW / 4

After observing some data points, we are only allowed to sample those
functions, that are consistent with the data.
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FUNCTION-SPACE VIEW / 5

After observing some data points, we are only allowed to sample those
functions, that are consistent with the data.
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FUNCTION-SPACE VIEW / 6

As we observe more and more data points, the variety of functions
consistent with the data shrinks.
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FUNCTION-SPACE VIEW / 7

Inutitively, there is something like “mean” and a “variance” of a
distribution over functions.
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WEIGHT-SPACE VS. FUNCTION-SPACE VIEW

Weight-Space View Function-Space View

Parameterize functions

Example: f (x | θ) = θ⊤x

Define distributions on θ Define distributions on f

Inference in parameter space Θ Inference in function space H

Next, we will see how we can define distributions over functions
mathematically.
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Distributions on Functions
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DISCRETE FUNCTIONS

For simplicity, let us consider functions with finite domains first.

Let X =
{

x(1), . . . , x(n)
}

be a finite set of elements and H the set of all
functions from X → R.

Since the domain of any h(.) ∈ H has only n elements, we can
represent the function h(.) compactly as a n-dimensional vector

h =
[
h
(

x(1)
)
, . . . , h

(
x(n)

)]
.

© Introduction to Machine Learning – 11 / 35



DISCRETE FUNCTIONS

Example 1: Let us consider h : X → Y where the input space consists
of two points X = {0, 1}.

Examples for functions that live in this space:
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DISCRETE FUNCTIONS

Example 2: Let us consider h : X → Y where the input space consists
of five points X = {0, 0.25, 0.5, 0.75, 1}.

Examples for functions that live in this space:
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DISCRETE FUNCTIONS

Example 3: Let us consider h : X → Y where the input space consists
of ten points.

Examples for functions that live in this space:

−2

−1

0

1

2

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1
x

h(
x)

© Introduction to Machine Learning – 14 / 35



DISCRETE FUNCTIONS

Example 3: Let us consider h : X → Y where the input space consists
of ten points.

Examples for functions that live in this space:
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DISTRIBUTIONS ON DISCRETE FUNCTIONS

One natural way to specify a probability function on discrete function
h ∈ H is to use the vector representation

h =
[
h
(

x(1)
)
, h

(
x(2)

)
, . . . , h

(
x(n)

)]
of the function.

Let us see h as a n-dimensional random variable. We will further
assume the following normal distribution:

h ∼ N (m,K ) .

Note: For now, we set m = 0 and take the covariance matrix K as
given. We will see later how they are chosen / estimated.
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DISCRETE FUNCTIONS

Example 1 (continued): Let h : X → Y be a function that is defined
on two points X . We sample functions by sampling from a
two-dimensional normal variable

h = [h(1), h(2)] ∼ N (m,K )
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In this example, m = (0, 0) and K =

(
1 0.5

0.5 1

)
.
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DISCRETE FUNCTIONS

Example 1 (continued): Let h : X → Y be a function that is defined
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two-dimensional normal variable
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DISCRETE FUNCTIONS

Example 1 (continued): Let h : X → Y be a function that is defined
on two points X . We sample functions by sampling from a
two-dimensional normal variable

h = [h(1), h(2)] ∼ N (m,K )
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DISCRETE FUNCTIONS

Example 2 (continued): Let us consider h : X → Y where the input
space consists of five points. We sample functions by sampling from a
five-dimensional normal variable

h = [h(1), h(2), h(3), h(4), h(5)] ∼ N (m,K )
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DISCRETE FUNCTIONS

Example 3 (continued): Let us consider h : X → Y where the input
space consists of ten points. We sample functions by sampling from
ten-dimensional normal variable

h = [h(1), h(2), . . . , h(10)] ∼ N (m,K )
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DISCRETE FUNCTIONS
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ROLE OF THE COVARIANCE FUNCTION

Note that the covariance controls the “shape” of the drawn function.
Consider two extreme cases where function values are

a) strongly correlated: K =


1 0.99 . . . 0.99

0.99 1 . . . 0.99

0.99 0.99
. . . 0.99

0.99 . . . 0.99 1


b) uncorrelated: K = I
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ROLE OF THE COVARIANCE FUNCTION / 2

“Meaningful” functions (on a numeric space X ) may be
characterized by a spatial property:

If two points x(i), x(j) are close in X -space, their function
values f (x(i)), f (x(j)) should be close in Y-space.

In other words: If they are close in X -space, their functions values
should be correlated!

We can enforce that by choosing a covariance function with

K ij high, if x(i), x(j) close.
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ROLE OF THE COVARIANCE FUNCTION / 3

We can compute the entries of the covariance matrix by a function
that is based on the distance between x(i), x(j), for example:

c) Spatial correlation: Kij = k(x(i), x(j)) = exp

(
− 1

2

∣∣∣x(i) − x(j)
∣∣∣2
)

−2

−1

0

1

2

x

h(
x)

Sample Function for b) K = I, n = 50

−2

−1

0

1

2

x
h(

x)

Sample Function for c), n = 50

Note: k(·, ·) is known as the covariance function or kernel. It will be studied in more

detail later on.
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Gaussian Processes
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FROM DISCRETE TO CONTINUOUS FUNCTIONS

We defined distributions on functions with discrete domain by
defining a Gaussian on the vector of the respective function values

h = [h(x(1)), h(x(2)), . . . , h(x(n))] ∼ N (m,K )

We can do this for n → ∞ (as “granular” as we want)
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FROM DISCRETE TO CONTINUOUS FUNCTIONS

No matter how large n is, we are still considering a function over a
discrete domain.

How can we extend our definition to functions with continuous
domain X ⊂ R?
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GAUSSIAN PROCESSES: INTUITION

Intuitively, a function f drawn from Gaussian process can be
understood as an “infinite” long Gaussian random vector.

It is unclear how to handle an “infinite” long Gaussian random
vector!
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GAUSSIAN PROCESSES: INTUITION

Thus, it is required that for any finite set of inputs
{x(1), . . . , x(n)} ⊂ X , the vector f has a Gaussian distribution

f =
[
f
(

x(1)
)
, . . . , f

(
x(n)

)]
∼ N (m,K ) ,

with m and K being calculated by a mean function m(.) /
covariance function k(., .).
This property is called Marginalization Property.
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GAUSSIAN PROCESSES

This intuitive explanation is formally defined as follows:

A function f (x) is generated by a GP GP (m(x), k (x, x′)) if for any
finite set of inputs

{
x(1), . . . , x(n)

}
, the associated vector of function

values f =
(
f (x(1)), . . . , f (x(n))

)
has a Gaussian distribution

f =
[
f
(

x(1)
)
, . . . , f

(
x(n)

)]
∼ N (m,K ) ,

with

m :=
(

m
(

x(i)
))

i
, K :=

(
k
(

x(i), x(j)
))

i,j
,

where m(x) is called mean function and k(x, x′) is called covariance
function.
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GAUSSIAN PROCESSES / 2

A GP is thus completely specified by its mean and covariance function

m(x) = E[f (x)]

k(x, x′) = E

[
(f (x)− E[f (x)])

(
f (x′)− E[f (x′)]

)]

Note: For now, we assume m(x) ≡ 0. This is not necessarily a drastic
limitation - thus it is common to consider GPs with a zero mean
function.
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SAMPLING FROM A GAUSSIAN PROCESS PRIOR

We can draw functions from a Gaussian process prior. Let us consider
f (x) ∼ GP (0, k(x, x′)) with the squared exponential covariance
function (∗)

k(x, x′) = exp

(
− 1

2ℓ2 ∥x − x′∥2
)
, ℓ = 1.

This specifies the Gaussian process completely.

(∗) We will talk later about different choices of covariance functions.
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SAMPLING FROM A GAUSSIAN PROCESS PRIOR
/ 2

To visualize a sample function, we

choose a high number n (equidistant) points
{

x(1), . . . , x(n)
}

compute the corresponding covariance matrix
K =

(
k
(
x(i), x(j)

))
i,j by plugging in all pairs x(i), x(j)

sample from a Gaussian f ∼ N (0,K ).

We draw 10 times from the Gaussian, to get 10 different samples.
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SAMPLING FROM A GAUSSIAN PROCESS PRIOR
/ 3

Since we specified the mean function to be zero m(x) ≡ 0, the drawn
functions have zero mean.
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Gaussian Processes as Indexed Family
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GAUSSIAN PROCESSES AS AN INDEXED FAMILY

A Gaussian process is a special case of a stochastic process which is
defined as a collection of random variables indexed by some index set
(also called an indexed family). What does it mean?

An indexed family is a mathematical function (or “rule”) to map indices
t ∈ T to objects in S.

Definition

A family of elements in S indexed by T (indexed family) is a
surjective function

s : T → S
t 7→ st = s(t)
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INDEXED FAMILY

Some simple examples for indexed families are:

finite sequences (lists):
T = {1, 2, . . . , n} and
(st)t∈T ∈ R

infinite sequences:
T = N and (st)t∈T ∈ R
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INDEXED FAMILY / 2

But the indexed set S can be something more complicated, for example
functions or random variables (RV):

T = {1, . . . ,m}, Yt ’s are
RVs: Indexed family is a
random vector.

T = {1, . . . ,m}, Yt ’s are
RVs: Indexed family is a
stochastic process in
discrete time

T = Z2, Yt ’s are RVs:
Indexed family is a
2D-random walk.
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INDEXED FAMILY

A Gaussian process is also an indexed family, where the random
variables f (x) are indexed by the input values x ∈ X .

Their special feature: Any indexed (finite) random vector has a
multivariate Gaussian distribution (which comes with all the nice
properties of Gaussianity!).

Visualization for a one-dimensional X .
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