Introduction to Machine Learning

Gaussian Processes Basics

0 0 X X 0 X X

Learning goals

- GPs model distributions over functions
- The marginalization property makes this distribution easily tractable
- GPs are fully specified by mean and covariance function
- GPs are indexed families

WEIGHT-SPACE VIEW

- Until now we considered a hypothesis space *H* of parameterized functions *f*(**x** | *θ*) (in particular, the space of linear functions).
- Using Bayesian inference, we derived distributions for θ after having observed data D.
- Prior believes about the parameter are expressed via a prior distribution q(θ), which is updated according to Bayes' rule

Let us change our point of view:

- Instead of "searching" for a parameter θ in the parameter space, we directly search in a space of "allowed" functions \mathcal{H} .
- We still use Bayesian inference, but instead specifying a prior distribution over a parameter, we specify a prior distribution **over functions** and update it according to the data points we have observed.

Intuitively, imagine we could draw a huge number of functions from some prior distribution over functions (*).

Functions drawn from a Gaussian process prior

^(*) We will see in a minute how distributions over functions can be specified.

After observing some data points, we are only allowed to sample those functions, that are consistent with the data.

Posterior process after 1 observation

After observing some data points, we are only allowed to sample those functions, that are consistent with the data.

Posterior process after 2 observations

After observing some data points, we are only allowed to sample those functions, that are consistent with the data.

Posterior process after 3 observations

As we observe more and more data points, the variety of functions consistent with the data shrinks.

Posterior process after 4 observations

Inutitively, there is something like "mean" and a "variance" of a distribution over functions.

Posterior process after 4 observations

2 € 0. -2 --2 $^{-1}$ х

WEIGHT-SPACE VS. FUNCTION-SPACE VIEW

Weight-Space ViewFunction-Space ViewParameterize functionsExample: $f(\mathbf{x} \mid \theta) = \theta^{\top} \mathbf{x}$

Define distributions on θ Define distributions on f

Inference in parameter space Θ Inference in function space \mathcal{H}

Next, we will see how we can define distributions over functions mathematically.

Distributions on Functions

For simplicity, let us consider functions with finite domains first.

Let $\mathcal{X} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$ be a finite set of elements and \mathcal{H} the set of all functions from $\mathcal{X} \to \mathbb{R}$.

Since the domain of any $h(.) \in \mathcal{H}$ has only *n* elements, we can represent the function h(.) compactly as a *n*-dimensional vector

$$\boldsymbol{h} = \left[h\left(\mathbf{x}^{(1)} \right), \dots, h\left(\mathbf{x}^{(n)} \right) \right].$$

Example 1: Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **two** points $\mathcal{X} = \{0, 1\}$.

Examples for functions that live in this space:

Example 1: Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **two** points $\mathcal{X} = \{0, 1\}$.

Examples for functions that live in this space:

Example 1: Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **two** points $\mathcal{X} = \{0, 1\}$.

Examples for functions that live in this space:

Example 2: Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points $\mathcal{X} = \{0, 0.25, 0.5, 0.75, 1\}$.

Examples for functions that live in this space:

Example 2: Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points $\mathcal{X} = \{0, 0.25, 0.5, 0.75, 1\}$.

Examples for functions that live in this space:

Example 2: Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points $\mathcal{X} = \{0, 0.25, 0.5, 0.75, 1\}$.

Examples for functions that live in this space:

Example 3: Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points.

Examples for functions that live in this space:

Example 3: Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points.

Examples for functions that live in this space:

Example 3: Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points.

Examples for functions that live in this space:

DISTRIBUTIONS ON DISCRETE FUNCTIONS

One natural way to specify a probability function on discrete function $h \in \mathcal{H}$ is to use the vector representation

$$\boldsymbol{h} = \left[h\left(\mathbf{x}^{(1)} \right), h\left(\mathbf{x}^{(2)} \right), \dots, h\left(\mathbf{x}^{(n)} \right) \right]$$

of the function.

Let us see h as a *n*-dimensional random variable. We will further assume the following normal distribution:

$$\boldsymbol{h} \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right)$$
.

Note: For now, we set m = 0 and take the covariance matrix K as given. We will see later how they are chosen / estimated.

0 0 X X 0 X X

Example 1 (continued): Let $h : \mathcal{X} \to \mathcal{Y}$ be a function that is defined on **two** points \mathcal{X} . We sample functions by sampling from a two-dimensional normal variable

Sample Function 1, n = 2Density of a 2-D Gaussian 3 2 ж) Ч ĥ 0 _1 0 h₁ х In this example, m = (0, 0) and $K = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$.

Example 1 (continued): Let $h : \mathcal{X} \to \mathcal{Y}$ be a function that is defined on **two** points \mathcal{X} . We sample functions by sampling from a two-dimensional normal variable

$$\boldsymbol{h} = [h(1), h(2)] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K})$$

Example 1 (continued): Let $h : \mathcal{X} \to \mathcal{Y}$ be a function that is defined on **two** points \mathcal{X} . We sample functions by sampling from a two-dimensional normal variable

$$\boldsymbol{h} = [h(1), h(2)] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K})$$

Example 2 (continued): Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points. We sample functions by sampling from a five-dimensional normal variable

× × 0 × × ×

$$h = [h(1), h(2), h(3), h(4), h(5)] \sim \mathcal{N}(m, K)$$

Example 2 (continued): Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points. We sample functions by sampling from a five-dimensional normal variable

× < 0 × × ×

$$h = [h(1), h(2), h(3), h(4), h(5)] \sim \mathcal{N}(m, K)$$

Example 2 (continued): Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **five** points. We sample functions by sampling from a five-dimensional normal variable

$$h = [h(1), h(2), h(3), h(4), h(5)] \sim \mathcal{N}(m, K)$$

Example 3 (continued): Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points. We sample functions by sampling from ten-dimensional normal variable

$$h = [h(1), h(2), \dots, h(10)] \sim \mathcal{N}(m, K)$$

value

0.8

0.4

Example 3 (continued): Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points. We sample functions by sampling from ten-dimensional normal variable

$$h = [h(1), h(2), \dots, h(10)] \sim \mathcal{N}(m, K)$$

Example 3 (continued): Let us consider $h : \mathcal{X} \to \mathcal{Y}$ where the input space consists of **ten** points. We sample functions by sampling from ten-dimensional normal variable

$$h = [h(1), h(2), \dots, h(10)] \sim \mathcal{N}(m, K)$$

0 0 X X 0 X X

ROLE OF THE COVARIANCE FUNCTION

Note that the covariance controls the "shape" of the drawn function. Consider two extreme cases where function values are

a) strongly correlated:
$$\boldsymbol{K} = \begin{pmatrix} 1 & 0.99 & \dots & 0.99 \\ 0.99 & 1 & \dots & 0.99 \\ 0.99 & 0.99 & \ddots & 0.99 \\ 0.99 & \dots & 0.99 & 1 \end{pmatrix}$$

b) uncorrelated: K = I

ROLE OF THE COVARIANCE FUNCTION / 2

• "Meaningful" functions (on a numeric space \mathcal{X}) may be characterized by a spatial property:

If two points $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$ are close in \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)}), f(\mathbf{x}^{(j)})$ should be close in \mathcal{Y} -space.

In other words: If they are close in \mathcal{X} -space, their functions values should be **correlated**!

• We can enforce that by choosing a covariance function with

 \boldsymbol{K}_{ij} high, if $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$ close.

ROLE OF THE COVARIANCE FUNCTION / 3

• We can compute the entries of the covariance matrix by a function that is based on the distance between **x**^(*i*), **x**^(*j*), for example:

c) Spatial correlation:
$$K_{ij} = k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{1}{2} \left|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right|^2\right)$$

Note: $k(\cdot, \cdot)$ is known as the **covariance function** or **kernel**. It will be studied in more detail later on.

× × 0 × × ×

Gaussian Processes

FROM DISCRETE TO CONTINUOUS FUNCTIONS

 We defined distributions on functions with discrete domain by defining a Gaussian on the vector of the respective function values

 $\mathbf{h} = [h(\mathbf{x}^{(1)}), h(\mathbf{x}^{(2)}), \dots, h(\mathbf{x}^{(n)})] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K})$

• We can do this for $n \to \infty$ (as "granular" as we want)

FROM DISCRETE TO CONTINUOUS FUNCTIONS

- No matter how large *n* is, we are still considering a function over a discrete domain.
- How can we extend our definition to functions with continuous domain $\mathcal{X} \subset \mathbb{R}$?

- Intuitively, a function *f* drawn from **Gaussian process** can be understood as an "infinite" long Gaussian random vector.
- It is unclear how to handle an "infinite" long Gaussian random vector!

• Thus, it is required that for **any finite set** of inputs $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\} \subset \mathcal{X}$, the vector **f** has a Gaussian distribution

$$\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)} \right), \dots, f\left(\mathbf{x}^{(n)} \right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K} \right)$$

with **m** and **K** being calculated by a mean function m(.) / covariance function k(.,.).

• This property is called Marginalization Property.

Thus, it is required that for any finite set of inputs
 {x⁽¹⁾,...,x⁽ⁿ⁾} ⊂ X, the vector f has a Gaussian distribution

$$\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)} \right), \dots, f\left(\mathbf{x}^{(n)} \right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K} \right)$$

with **m** and **K** being calculated by a mean function m(.) / covariance function k(.,.).

• This property is called Marginalization Property.

Thus, it is required that for any finite set of inputs
 {x⁽¹⁾,...,x⁽ⁿ⁾} ⊂ X, the vector f has a Gaussian distribution

$$\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)} \right), \dots, f\left(\mathbf{x}^{(n)} \right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K} \right)$$

with **m** and **K** being calculated by a mean function m(.) / covariance function k(.,.).

• This property is called Marginalization Property.

GAUSSIAN PROCESSES

This intuitive explanation is formally defined as follows:

A function $f(\mathbf{x})$ is generated by a GP $\mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ if for **any finite** set of inputs $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$, the associated vector of function values $\mathbf{f} = (f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(n)}))$ has a Gaussian distribution

$$\boldsymbol{f} = \left[f\left(\mathbf{x}^{(1)}\right), \ldots, f\left(\mathbf{x}^{(n)}\right)\right] \sim \mathcal{N}(\boldsymbol{m}, \boldsymbol{K}),$$

with

$$\mathbf{m} := \left(m\left(\mathbf{x}^{(i)}\right) \right)_{i}, \quad \mathbf{K} := \left(k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right) \right)_{i,j},$$

where $m(\mathbf{x})$ is called mean function and $k(\mathbf{x}, \mathbf{x}')$ is called covariance function.

GAUSSIAN PROCESSES / 2

A GP is thus completely specified by its mean and covariance function

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbb{E}\left[(f(\mathbf{x}) - \mathbb{E}[f(\mathbf{x})]) (f(\mathbf{x}') - \mathbb{E}[f(\mathbf{x}')]) \right]$$

× 0 0 × × ×

Note: For now, we assume $m(\mathbf{x}) \equiv 0$. This is not necessarily a drastic limitation - thus it is common to consider GPs with a zero mean function.

SAMPLING FROM A GAUSSIAN PROCESS PRIOR

We can draw functions from a Gaussian process prior. Let us consider $f(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$ with the squared exponential covariance function ^(*)

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\ell^2}\|\mathbf{x} - \mathbf{x}'\|^2\right), \ \ell = 1.$$

This specifies the Gaussian process completely.

(*) We will talk later about different choices of covariance functions.

× 0 0 × ×

SAMPLING FROM A GAUSSIAN PROCESS PRIOR

To visualize a sample function, we

- choose a high number *n* (equidistant) points $\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}\}$
- compute the corresponding covariance matrix $\mathbf{K} = (k (\mathbf{x}^{(i)}, \mathbf{x}^{(j)}))_{i,i}$ by plugging in all pairs $\mathbf{x}^{(i)}, \mathbf{x}^{(j)}$
- sample from a Gaussian $\mathbf{f} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$.

We draw 10 times from the Gaussian, to get 10 different samples.

SAMPLING FROM A GAUSSIAN PROCESS PRIOR / 3

Since we specified the mean function to be zero $m(\mathbf{x}) \equiv 0$, the drawn functions have zero mean.

× × ×

× > 0 × ×

Gaussian Processes as Indexed Family

GAUSSIAN PROCESSES AS AN INDEXED FAMILY

A Gaussian process is a special case of a **stochastic process** which is defined as a collection of random variables indexed by some index set (also called an **indexed family**). What does it mean?

An **indexed family** is a mathematical function (or "rule") to map indices $t \in T$ to objects in S.

Definition

A family of elements in ${\mathcal S}$ indexed by ${\mathcal T}$ (indexed family) is a surjective function

$$egin{array}{rcl} m{s}: m{T} &
ightarrow & m{\mathcal{S}} \ t & \mapsto & m{s}_t = m{s}(t) \end{array}$$

× × 0 × × ×

INDEXED FAMILY

Some simple examples for indexed families are:

INDEXED FAMILY / 2

But the indexed set S can be something more complicated, for example functions or **random variables** (RV):

- *T* = {1,...,*m*}, *Y*_t's are RVs: Indexed family is a random vector.
- T = {1,...,m}, Y_t's are RVs: Indexed family is a stochastic process in discrete time
- $T = \mathbb{Z}^2$, Y_t 's are RVs: Indexed family is a 2D-random walk.

INDEXED FAMILY

- A Gaussian process is also an indexed family, where the random variables *f*(**x**) are indexed by the input values **x** ∈ *X*.
- Their special feature: Any indexed (finite) random vector has a multivariate Gaussian distribution (which comes with all the nice properties of Gaussianity!).

Visualization for a one-dimensional \mathcal{X} .

INDEXED FAMILY

- A Gaussian process is also an indexed family, where the random variables *f*(**x**) are indexed by the input values **x** ∈ *X*.
- Their special feature: Any indexed (finite) random vector has a multivariate Gaussian distribution (which comes with all the nice properties of Gaussianity!).

Visualization for a two-dimensional \mathcal{X} .