Introduction to Machine Learning

Feature Selection Feature Selection: Wrapper methods

× < 0 × × ×

Learning goals

- Understand how wrapper methods work
- Forward + backward search, EAs
- Advantages and disadvantages

INTRODUCTION

- Wrapper methods emerge from the idea that different sets of features can be optimal for different learners
- Wrapper is a discrete search strategy for *S*, where objective criterion is test error of learner as function of *S*. Criterion can also be calculated on train set, approximating test error (AIC, BIC)
- \Rightarrow Use the learner to assess the quality of the feature sets

Hasse diagram illustrating search space. Knots are connected if Hamming distance = 1 (Source: Wikipedia)

OBJECTIVE FUNCTION

Given *p* features, **best-subset selection problem** is to find subset $S \subseteq \{1, ..., p\}$ optimizing objective $\Psi : \Omega \to \mathbb{R}$:

 $S^* \in rgmin_{S \subset \Omega} \{ \Psi(S) \}$

- Ω = search space of all feature subsets $S \subseteq \{1, ..., p\}$. Usually we encode this by bit vectors, i.e., $\Omega = \{0, 1\}^p$ (1 = feat. selected)
- Objective Ψ can be different functions, e.g., AIC/BIC for LM or cross-validated performance of a learner
- Poses a discrete combinatorial optimization problem over search space of size = 2^p, i.e., grows exponentially in p (power set)
- Unfortunately can not be solved efficiently in general (NP hard; see, e.g., Natarajan 1995)
- Can avoid searching entire space by employing efficient search strategies, traversing search space in a "smart" way

GREEDY FORWARD SEARCH

Let $S \subset \{1, \dots, p\}$ be subset of feature indices.

- Start with the empty feature set $S = \emptyset$
- **②** For a given set *S*, generate all $S_j = S \cup \{j\}$ with *j* ∉ *S*.
- Evaluate the classifier on all S_j and use the best S_j

Example GFS on a subset of bike sharing data with features

windspeed, temp., humidity and feeling temp. Node value is RMSE.

VISUALIZATION OF GFS

Iterate over this procedure

× × 0 × × ×

VISUALIZATION OF GFS

Iterate over this procedure

VISUALIZATION OF GFS

× × 0 × × ×

Terminate if performance does not improve further or max. number of features is used

GREEDY BACKWARD SEARCH

- Start with the full index set of features $S = \{1, \dots, p\}$.
- For a given set *S* generate all $S_j = S \setminus \{j\}$ with $j \in S$.
- Evaluate the classifier on all S_j and use the best S_j .
- Iterate over this procedure.
- Terminate if:
 - the performance drops drastically, or
 - falls below given threshold.
- GFS is much faster and generates sparser feature selections
- GBS much more costly and slower, but sometimes slightly better.

× × 0 × × ×

VISUALIZATION OF GBS

Example Greedy Backward Search on bike sharing data

EXTENSIONS

- Eliminate or add multiple features at once to increase speed
- Allow alternating forward and backward search (also known as stepwise model selection by AIC/BIC in statistics)
- Randomly sample candidate feature subsets in each iteration
- Focus search on regions of feature subsets where an improvement is more likely

EXTENSIONS: GENETIC ALGORITHMS FOR FS

Example Template for $(\mu + \lambda)$ -Evolutionary Strategy applied to FS

- Initialization: μ random bit vectors (feature inclusion/exclusion)
- Evaluate model performance for bit vectors
- Select μ fittest bit vectors (parents)
- $\ensuremath{\textcircled{0}}\ \ensuremath{\textcircled{0}}\ \ensuremat$
- Select μ fittest bit vectors from $(\mu + \lambda)$ options for next generation
- Repeat steps 2-5 until stopping criterion is met

- Use CV/validation set for evaluation to avoid overfitting
- Choice of μ and λ allows some control over exploration vs. exploitation trade-off
- See our slds-Imu 2021 for further information

Mitsuo Gen 1996

EXTENSIONS: GENETIC ALGORITHMS FOR FS

× < 0 × × ×

Top: BIC over number of iterations.

Bottom: Bit representation of selected features over iterations.

WRAPPERS

Advantages:

- Can be combined with any learner
- Any performance measure can be used
- Optimizes the desired criterion directly

Disadvantages:

- Evaluating target function is expensive
- Does not scale well with number of features
- Does not use additional info about model structure
- Nested resampling becomes necessary