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INTRODUCTION

Feature selection:
Finding a well-performing, hopefully small set of features for a task.

Feature selection is critical for
@ reducing noise and overfitting
@ improving performance/generalization
@ enhancing interpretability by identifying most informative features

Features can be selected based on domain knowledge, or data-driven
algorithmic approaches. We focus on the latter here.
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MOTIVATION

@ Naive view:

e More features — more information — discriminant power 1
e Model is not harmed by irrelevant features since their
parameters can simply be estimated as 0.

@ In practice, irrelevant and redundant features can “confuse”
learners (see curse of dimensionality) and worsen performance.

@ Example: In linear regression, R? is monotonically increasing in p,
but adding irrelevant features leads to overfitting (capturing noise).
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MOTIVATION /2

@ In high-dimensional data sets, we often have prior information that
many features are either irrelevant or of low quality

@ Having redundant features can cost something during prediction
(money or time)

@ Many models require n > p data. Thus, we either need to
e adapt models to high-dimensional data (e.g., regularization)
e design entirely new procedures for p > n data
o use filter preprocessing methods from this lecture
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SIZE OF DATASETS

Many new forms of technical measurements and connected data leads
to availability of extremely high-dimensional data sets.

@ Classical setting: Up to around 102 features, feature selection
might be relevant, but benefits often negligible.

o Datasets of medium to high dimensionality: At around 102 to
108 features, classical approaches can still work well, while
principled feature selection helps in many cases.

@ High-dimensional data: 103 to 10° or more features. Examples:
micro-array / gene expression data and text categorization
(bag-of-words features). If we also have few observations,
scenario is called p > n.
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FEATURE SELECTION VS. EXTRACTION

Feature selection
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FEATURE SELECTION VS. EXTRACTION /2

@ Both FS and FE contribute to
1) dimensionality reduction and 2) simplicity of models

@ FE can be unsupervised (PCA, multidim scaling, manifold learning) or supervised
(supervised PCA, partial least squares)

@ FE can produce lower dim projections which can work better than FS; whether
FE+model is interpretable depends on how interpretable extracted features are
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TYPES OF FEATURE SELECTION METHODS

In rest of the chapter, we introduce different types of methods for FS:

@ Filters: evaluate relevance of features using statistical properties
such as correlation with target variable

@ Wrappers: use a model to evaluate subsets of features
@ Embedded methods: integrate FS directly into specific model - we
look at them in their dedicated chapters (e.g., CART, Lo, L)
Example: embedded method (Lasso) regularizing model params with
L1 penalty enables “automatic" feature selection:
Rieg(0) = Remp(0) + Al|6]]1 = Z (v — 87xD)* + AP, [6)]
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