
Introduction to Machine Learning

Feature Selection
Feature Selection: Filter Methods

Learning goals
Understand how filter methods work
and how to apply them for feature
selection.

Know filter methods based on
correlation, test statistics, and mutual
information.



INTRODUCTION

Filter methods construct a measure that quantifies the
dependency between features and the target variable

They yield a numerical score for each feature xj , according to
which we rank the features

They are model-agnostic and can be applied generically

Exemplary filter score ranking for Spam data
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χ2-STATISTIC

Test for independence between categorical xj and cat. target y .
Numeric features or targets can be discretized.

Hypotheses:
H0 : p(xj = m, y = k) = p(xj = m) p(y = k) ∀m, k
H1 : ∃ m, k : p(xj = m, y = k) ̸= p(xj = m) p(y = k)

Calculate χ2-statistic for each feature-target combination:

χ2
j =

M∑
m=1

K∑
k=1

(
emk − ẽmk

ẽmk
)

H0∼
approx.

χ2((M − 1)(K − 1)) ,

where emk is observed relative frequency of pair (m, k),
ẽmk = em·e·k

n is expected relative frequency, and M,K are number
of values xj and y can take

The larger χ2
j , the more dependent is the feature-target

combination → higher relevance
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PEARSON & SPEARMAN CORRELATION

Pearson correlation r(xj , y):

For numeric features and targets only

Measures linear dependency

r(xj , y) =
∑n

i=1(x
(i)
j −x̄j)(y(i)−ȳ)√∑n

i=1(x
(i)
j −x̄j)

√
(
∑n

i=1 y(i)−ȳ)
, −1 ≤ r ≤ 1

Spearman correlation rSP(xj , y):

For features and targets at least on ordinal scale

Equivalent to Pearson correlation computed on ranks

Assesses monotonicity of relationship

Use absolute values |r(xj , y)| for feature ranking:
higher score indicates a higher relevance
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PEARSON & SPEARMAN CORRELATION / 2

Only linear dependency structure, non-linear (non-monotonic) aspects
are not captured:

Comparison of Pearson correlation for different dependency structures.

To assess strength of non-linear/non-monotonic dependencies,
generalizations such as distance correlation can be used.

© Introduction to Machine Learning – 4 / 8



WELCH’S t-TEST

For binary classification with Y = {0, 1} and numeric features

Two-sample t-test for samples with unequal variances

Hypotheses: H0: µj0 = µj1 vs. H1: µj0 ̸= µj1

Calculate Welch’s t-statistic for every feature xj

tj = (x̄j0 − x̄j1)/
√

(S2
xj0
/n0 + S2

xj1
/n1)

(x̄jy , S2
xjy

and ny are the sample mean, variance and sample size)

Higher t-score indicates higher relevance
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AUC/ROC

For binary classification with Y = {0, 1} and numeric features

Classify samples using single feature (with thresholds), compute
AUC per feature as proxy for its ability to separate classes

Features are then ranked; higher AUC scores → higher relevance.
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F-TEST

For multiclass classification (g ≥ 2) and numeric features

Assesses whether the expected values of a feature xj within the
classes of the target differ from each other

Hypotheses:
H0 : µj0 = µj1 = · · · = µjg vs. H1 : ∃ k , l : µjk ̸= µjl

Calculate the F-statistic for each feature-target combination:

F =
between-group variability

within-group variability

F =

∑g
k=1 nk(x̄jk − x̄j)

2/(g − 1)∑g
k=1

∑nk
i=1(x

(i)
jk − x̄jk )

2/(n − g)

where x̄jk is the sample mean of feature xj where y = k and x̄j is
the overall sample mean of feature xj

A higher F-score indicates higher relevance of the feature
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MUTUAL INFORMATION (MI)

I(X ;Y ) = Ep(x,y)

[
log

p(X ,Y )

p(X)p(Y )

]
Each feature xj is rated according to I(xj ; y); this is sometimes
called information gain

MI measures the amount of "dependence" between RV by looking
how different their joint dist. is from strict independence p(X)p(Y ).

MI is zero iff X ⊥⊥ Y . On the other hand, if X is a deterministic
function of Y or vice versa, MI becomes maximal

Unlike correlation, MI is defined for both numeric and categorical
variables and provides a more general measure of dependence

To estimate MI: for discrete features, use observed frequencies; for
continuous features, binning, kernel density estimation is used
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