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Learning goals
Understand that our intuition about
geometry fails in high-dimensional
spaces

Understand the effects of the curse of
dimensionality



CURSE OF DIMENSIONALITY

The phenomenon of data becoming sparse in high-dimensional
spaces is one effect of the curse of dimensionality.

The curse of dimensionality refers to various phenomena that
arise when analyzing data in high-dimensional spaces that do not
occur in low-dimensional spaces.

Our intuition about the geometry of a space is formed in two and
three dimensions.

We will see: This intuition is often misleading in high-dimensional
spaces.
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CURSE OF DIMENSIONALITY: EXAMPLE

To illustrate one of the problematic phenomena of data in high
dimensional data, we look at an introductory example:

We are given 20 emails, 10 of them are spam and 10 are not.
Our goal is to predict if a new incoming mail is spam or not.

For each email, we extract the following features:

frequency of exclamation marks (in %)

the length of the longest sequence of capital letters

the frequency of certain words, e.g., “free” (in %)

...

... and we could extract many more features!
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CURSE OF DIMENSIONALITY: EXAMPLE / 2

Based on the frequency of exclamation marks, we train a very simple
classifier (a decision stump with split point x = 0.25):

We divide the input space into 2 equally sized regions.

In the second region [0.25, 0.5], 7 out of 10 are spam.

Given that at least 0.25% of all letters are exclamation marks, an
email is spam with a probability of 7

10 = 0.7.
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CURSE OF DIMENSIONALITY: EXAMPLE / 3

Let us feed more information into our classifier. We include a feature
that contains the length of the longest sequence of capital letters.

In the 1D case we had 20 observations across 2 regions.

The same number is now spread across 4 regions.
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CURSE OF DIMENSIONALITY: EXAMPLE / 4

Let us further increase the dimensionality to 3 by using the frequency of
the word “your” in an email.
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CURSE OF DIMENSIONALITY: EXAMPLE / 5

When adding a third dimension, the same number of observations
is spread across 8 regions.

In 4 dimensions the data points are spread across 16 cells, in 5
dimensions across 32 cells and so on ...

As dimensionality increases, the data become sparse; some of
the cells become empty.

There might be too few data in each of the blocks to understand
the distribution of the data and to model it.

Bishop, Pattern Recognition and Machine Learning, 2006
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Geometry of High-Dimensional Spaces
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THE HIGH-DIMENSIONAL CUBE

We embed a small cube with edge length a inside a unit cube.

How long does the edge length a of this small hypercube have to
be so that the hypercube covers 10%, 20%, ... of the volume of the
unit cube (volume 1)?
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THE HIGH-DIMENSIONAL CUBE / 2

ap =
1
10

⇔ a =
1

p
√

10

So: covering 10% of total volume in a cell requires cells with
almost 50% of the entire range in 3 dimensions, 80% in 10
dimensions.
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THE HIGH-DIMENSIONAL SPHERE

Another manifestation of the curse of dimensionality is that the
majority of data points are close to the outer edges of the sample.
Consider a hypersphere of radius 1. The fraction of volume that lies in
the ϵ-“edge”, ϵ := R − r , of this hypersphere can be calculated by the
formula

1 −
(

1 − ϵ

R

)p
.

If we peel a high-dimensional orange, there is almost nothing left.
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THE HIGH-DIMENSIONAL SPHERE / 2

Consider a 20-dimensional sphere. Nearly all of the volume lies in its
outer shell of thickness 0.2:
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HYPHERSPHERE WITHIN HYPERCUBE
Consider a p-dimensional hypersphere of radius r and volume Sp(r)
inscribed in a p-dimensional hypercube with sides of length 2r and
volume Cp(r). Then it holds that

lim
p→∞

Sp(r)
Cp(r)

= lim
p→∞

(
π

p
2

Γ( p
2 +1)

)
r p

(2r)p
= lim

p→∞

π
p
2

2pΓ( p
2 + 1)

= 0,

i.e., as the dimensionality increases, most of the volume of the
hypercube can be found in its corners.

Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and
Algorithms, 2014
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HYPHERSPHERE WITHIN HYPERCUBE / 2

Consider a 10-dimensional sphere inscribed in a 10-dimensional cube.
Nearly all of the volume lies in the corners of the cube:

Note: For r > 0, the volume fraction Sp(r)
Cp(r)

is independent of r .
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UNIFORMLY DISTRIBUTED DATA

The consequences of the previous results for uniformly distributed data
in the high-dimensional hypercube are:

Most of the data points will lie on the boundary of the space.

The points will be mainly scattered on the large number of corners
of the hypercube, which themselves will become very long spikes.

Hence the higher the dimensionality, the more similar the minimum
and maximum distances between points will become.

This degrades the effectiveness of most distance functions.

Neighborhoods of points will not be local anymore.
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GAUSSIANS IN HIGH DIMENSIONS

A further manifestation of the curse of dimensionality appears if we
consider a standard Gaussian Np(0, Ip) in p dimensions.

After transforming from Cartesian to polar coordinates and
integrating out the directional variables, we obtain an expression
for the density p(r) as a function of the radius r (i.e., the point’s
distance from the origin), s.t.

p(r) =
Sprp−1

(2πσ2)p/2
exp

(
− r2

2σ2

)
,

where Sp is the surface area of the p-dimensional unit
hypersphere.

Thus p(r)δr is the approximate probability mass inside a thin shell
of thickness δr located at radius r .
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GAUSSIANS IN HIGH DIMENSIONS / 2

To verify this functional relationship empirically, we draw 104 points
from the p-dimensional standard normal distribution and plot p(r)
over the histogram of the points’ distances to the origin:

We can see that for large p the probability mass of the Gaussian is
concentrated in a fairly thin “shell” rather far away from the origin.
This may seem counterintuitive, but:
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GAUSSIANS IN HIGH DIMENSIONS / 3

For the probability mass of a hyperspherical shell it follows that∫ r+ δr
2

r− δr
2

p(r̃)dr̃ =
∫

r− δr
2 ≤ ||x||2 ≤ r+ δr

2

fp(x̃)d x̃,

where fp(x) is the density of the p-dimensional standard normal
distribution and p(r) the associated radial density.

While fp becomes smaller with increasing r , the region of the
integral -the hyperspherical shell- becomes bigger.
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INTERMEDIATE REMARKS

However, we can find effective techniques applicable to
high-dimensional spaces if we exploit these properties of real data:

Often the data is restricted to a manifold of a lower dimension.
(Or at least the directions in the feature space over which
significant changes in the target variables occur may be confined.)

At least locally small changes in the input variables usually will
result in small changes in the target variables.
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