
Introduction to Machine Learning

Curse of Dimensionality
Curse of Dimensionality - Examples
Learning Algorithms

Learning goals
See how the performance of k-NN
and the linear model deteriorates in
high-dimensional spaces



EXAMPLE: K-NN

Let us look at the performance of algorithms for increasing
dimensionality. First, we consider the k-NN algorithm:

In a high dimensional space, data points are spread across a huge
space.

The distance to the next neighbor dNN1(x) becomes extremely
large.

The distance might even get so large that all points are equally far
away - we cannot really determine the nearest neighbor anymore.
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EXAMPLE: K-NN / 2

Minimal, mean and maximal (NN)-distances of 104 points uniformly
distributed in the hypercube [0, 1]p:
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EXAMPLE: K-NN / 3

We see a decrease of relative contrast1 c := max(d(x,x̃))−min(d(x,x̃))
max(d(x,x̃)) and

“locality”2 l := d(x,x̃)−dNN1(x)
d(x,x̃)

with increasing number of dimensions p:

1[Aggarwal et al., 2001]
2our non-standard definition
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EXAMPLE: K-NN

The consequences for the k-nearest neighbors approach can be
summarized as follows:

At constant sample size n and growing p, the distance between
the observations increases
→ the coverage of the p-dimensional space decreases,
→ every point becomes isolated / far way from all other points.

The size of the neighborhood Nk(x) also “increases”
(at constant k )
→ it is no longer a “local” method.

Reducing k dramatically does not help much either, since the
fewer observations we average, the higher the variance of our fit.

→ k-NN estimates get more inaccurate with increasing dimensionality
of the data.
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EXAMPLE: K-NN / 2

To demonstrate this, we generate an artificial data set of dimension p
as follows: We define a = 2√

p and

with probability 1
2 we generate a sample from class 1 by sampling

from a Gaussian with mean µµµ = (a, a, ..., a) and unit covariance
matrix

with probability 1
2 we generate a sample from class 2 by sampling

from a Gaussian with mean −µµµ = (−a,−a, ...,−a) and unit
covariance matrix
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EXAMPLE: K-NN / 3
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EXAMPLE: K-NN / 4

This example is constructed such that the Bayes error is always
constant and does not depend on the dimension p.

The Bayes optimal classifiers predicts ŷ = 1 iff

P (y = 1 | x) =
p(x | y = 1)P(y = 1)

p(x)
=

1
2
· p(x | y = 1)

p(x)

≥ 1
2
· p(x | y = 2)

p(x)

=
p(x | y = 2)P(y = 2)

p(x)
= P (y = 2 | x) .

This is equivalent to

ŷ = 1 ⇔ exp

(
−1

2
(x −µµµ)⊤ (x −µµµ)

)
≥ exp

(
−1

2
(x +µµµ)⊤ (x +µµµ)

)
⇔ x⊤µ ≥ 0.
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EXAMPLE: K-NN / 5

Optimal Bayes classifier and Bayes error (shaded area):
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EXAMPLE: K-NN / 6

We can calculate the corresponding expected misclassification error
(Bayes error)

p(ŷ = 1 | y = 2)P(y = 2) + p(ŷ = 2 | y = 1)P(y = 1)

=
1
2
· p(x⊤µµµ ≥ 0 | y = 2) +

1
2
· p(x⊤µµµ ≤ 0 | y = 1)

symm.
= p(x⊤µµµ ≤ 0 | y = 1) = p

(
p∑

i=1

axi ≤ 0 | y = 1

)

= p

(
p∑

i=1

xi ≤ 0 | y = 1

)
.

∑p
i=1 xi | y = 1 ∼ N (p · a, p) , because it is the sum of independent

normal random variables xi | y = 1 ∼ N (a, 1) (the vector x | y = 1
follows a N (µµµ, I) distribution with µµµ = (a, ..., a)).
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EXAMPLE: K-NN / 7

We get for the Bayes error:

= p
(∑p

i=1 xi − p · a
√

p
≤ −p · a

√
p

| y = 1
)

= Φ(−
√

pa)
a= 2√

p
= Φ(−2) ≈ 0.0228,

where Φ is the distribution function of a standard normal random
variable.

We see that the Bayes error is independent of p.
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EXAMPLE: K-NN / 8

We also train a k-NN classifier for k = 3, 7, 15 for increasing
dimensions and monitor its performance (evaluated by 10 times
repeated 10-fold CV).

→ k-NN deteriorates quickly with increasing dimension
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EXAMPLE: LINEAR MODEL

We also investigate how the linear model behaves in high dimensional
spaces.

We take the Boston Housing data set, where the value of houses
in the area around Boston is predicted based on 13 features
describing the region (e.g., crime rate, status of the population,
etc. ).

We train a linear model on the data consisting of 506 observations.

We artificially create a high-dimensional dataset by adding
100, 200, 300, ... noise variables (containing no information at all)
and look at the performance of a linear model trained on this
modified data (10 times repeated 10-fold CV).
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EXAMPLE: LINEAR MODEL / 2

We compare the performance of an LM to that of a regression tree.

→ The unregularized LM struggles with the added noise features, while
our tree seems to nicely filter them out.

Note: Trees automatically perform feature selection as only one feature at a time is

considered for splitting (the smaller the depth of the tree, the less features are

selected). Thus, they often perform well in high-dimensional settings.
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EXAMPLE: LINEAR MODEL / 3

The regression coefficients of the noise features can not be
estimated precisely as zero in the unregularized LM due to small
random correlations.

With an increasing number of these noise features, the prediction
error rises.

To see this, we can quantify the influence of the noise features on
the prediction of each observation.
Therefore we decompose the response ŷ (i) of each iterations’ test
set into ŷ (i)

true (predicted with noise features set to 0) and ŷ (i)
noise

(predicted with true features set to 0), s.t.
ŷ (i) = ŷ (i)

true + ŷ (i)
noise + intercept.

With this, we can define the “average proportional influence of the

noise features” κ :=

(
|ŷ(i)

noise|
|ŷ(i)

true|+|ŷ(i)
noise|

)
.
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EXAMPLE: LINEAR MODEL / 4

When we add 400 noise features to the model, most of the time, on
average, over 50% of the flexible part of the prediction (ŷ (i) − intercept)
is determined by the noise features.
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COD: WAYS OUT

Many methods besides k-NN struggle with the curse of dimensionality.
A large part of ML is concerned with dealing with this problem and
finding ways around it.

Possible approaches are:

Increasing the space coverage by gathering more observations
(not always viable in practice!)

Reducing the number of dimensions before training (e.g. by using
domain knowledge, PCA or feature selection)

Regularization
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