
Introduction to Machine Learning

Boosting
Gradient Boosting: XGBoost

Learning goals
Overview over XGB

Regularization in XGB

Approximate split finding

XBG - EXTREME GRADIENT BOOSTING

Open-source and scalable tree boosting system

Efficient implementation in C++ with interfaces to many other
programming languages

Parallel approximate split finding

Additional regularization techniques

Feature and data subsampling

Cluster and GPU support

Highly optimized and often achieves top performance in
benchmarks – if properly tuned

© Introduction to Machine Learning – 1 / 8

3 EXTRA REGULARIZATION TERMS

R[m]
reg =

n∑
i=1

L
(

y (i), f [m−1](x(i)) + b[m](x(i))
)

+ λ1J1(b[m]) + λ2J2(b[m]) + λ3J3(b[m]),

J1(b[m]) = T [m]: Nr of leaves to penalize tree depth

J2(b[m]) =
∥∥c[m]

∥∥2
2: L2 penalty over leaf values

J3(b[m]) =
∥∥c[m]

∥∥
1: L1 penalty over leaf values

© Introduction to Machine Learning – 2 / 8

TREE GROWING

Grown to max depth

Fully expanded and leaves split even if no improvement

At the end, each split that did not improve risk is pruned

S
LR
=5.2

S
LR
=3.1 S

LR
=1.45

-0.02 0.15 -0.11 0.22

S
LR
=5.2

S
LR
=3.1 S

LR
=1.45

-0.02 0.15 -0.11 0.22

© Introduction to Machine Learning – 3 / 8

SUBSAMPLING

Data Subsampling: XGB uses stochastic GB.

Feature Subsampling: Similar to mtry in a random forest only a
random subset of features is used for split finding.

The fraction of features for a split can be randomly sampled for each
1 tree
2 level of a tree
3 split

Feature subsampling speeds up training even further and can create a
more diverse ensemble that often performs better.

© Introduction to Machine Learning – 4 / 8

APPROXIMATE SPLIT-FINDING ALGORITHMS

Speeds up tree building for large data

Considers not all, but only l splits per feature

Usually percentiles of the empirical distribution of each feature

Computed once (global) or recomputed after each split (local)

Called Histogram-based Gradient Boosting

Global Local

Blue lines are percentiles and red = selected split

© Introduction to Machine Learning – 5 / 8

DROPOUT ADDITIVE-REGRESSION TREES

DART introduces idea of dropout regularization used in DL to boosting

In iteration m we construct b̂[m]

To compute PRs we need f̂ [m−1]

We compute this differently, by using random subset
D ⊂ b̂[1], . . . b̂[m−1] of size (m − 1) · pdrop is ignored

To avoid overshot predictions in ensemble, we scale the BLs at the
end of the iteration, by 1

|D|+1 b̂[m] and |D|
|D|+1 b̂ ∀b̂ ∈ D.

pdrop = 0: Ordinary GB

pdrop = 1: All BLs are trained independently, and equally weighted.
Model is very similar to random forest.

⇒ pdrop is smooth transition from GB to RF

© Introduction to Machine Learning – 6 / 8

PARALLELISM AND GPU COMPUTATION

GB is inherently sequential, not easy to parallelize

But: Building of BLs can be parallelized

Data sort and split eval in different branches of tree BLs can be
computed in parallel by using efficient block data structures

Can also gain huge speed-up by moving from CPU to GPU

© Introduction to Machine Learning – 7 / 8

OVERVIEW OF IMPORTANT HYPERPARAMETERS

HP (as named in software) Type Typical Range Trafo Default Description

eta R [−4, 0] 10x 0.3 learning rate (also called ν) shrinks
contribution of each boosting up-
date

nrounds I {1, . . . , 5000} – – number of boosting iterations. Can
also be optimized with early stop-
ping.

gamma R [−7, 6] 2x 0 minimum loss reduction required to
make a further partition on a leaf
node of the tree

max_depth I {1, . . . , 20} – 6 maximum depth of a tree
colsample_bytree R [0.1, 1] – 1 subsample ratio of columns for

each tree
colsample_bylevel R [0.1, 1] – 1 subsample ratio of columns for

each depth level
lambda R [−10, 10] 2x 1 L2 regularization term on weights
alpha R [−10, 10] 2x 0 L1 regularization term on weights
subsample R [0.1, 1] – 1 subsample ratio of the training in-

stances

© Introduction to Machine Learning – 8 / 8

