Introduction to Machine Learning

Boosting
Gradient Boosting: Deep Dive XGBoost
Optimization

Learning goals

@ Understand details of the regularized
risk in XGBoost

@ Understand approximation of loss
used in optimization

@ Understand split finding algorithm
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RISK MINIMIZATION

XGBoost uses a risk function with 3 regularization terms:

R!Zg _ Z ; <y(i)7 Am=11(x()) 4 b[m](x(f))>
i=1

+ A (B Ao (B 4 Ags (LT,
with Jy (b[’”]) = TIm the number of leaves in the tree to penalize tree
depth.

Jo(blM) = Hc[”’]Hz and Js(bl™) = ||el™ ||, are L2 and L1 penalties of

the terminal region values /™, t = 1,..., T{m,

We define J(bIM) := Ay Jy (bIM) 4+ Aado(bI™) + Ags(bIM).
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RISK MINIMIZATION /2

To approximate the loss in iteration m, a second-order Taylor expansion
around fI™=1(x) is computed:

L(y, ™1 (x) + bl (x)) ~
Ly, A7) + g™ (B (x) + 2 A7 ()17 ()7,
with gradient

oL(y, fm"1(x))

M (x) =
g (X) af[m_ﬂ(x)

and Hessian
OPL(y, flm- 1](X))
ofm=1)(x)?

Note: g[m](x) are the negative pseudo-residuals —7™ we use in
standard gradient boosting to determine the direction of the update.

() =
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RISK MINIMIZATION /3

Since L(y, fim=1(x)) is constant, the optimization simplifies to

Risg = Zg["’] ()67 (x7) 2l () )2 1 J(617) + const

Tlml

OCZ Z g[m [’77]Jr h[m](x(/))( [m]) +J(b[m])
— X(’) H;m]
7lm]

1
=3 G+ SH ™)+ u(el™).

Where Ggm] and Ht[m] are the accumulated gradient and Hessian values
in terminal node t.

Introduction to Machine Learning — 3/7

X X



RISK MINIMIZATION /4
Expanding J(bl™):

7lm]
1
Rigg =3 <Gtm]ct[m] + §H1[m]( a™y? + )\ (™) + As!ct[m]|> + AT
t=1
7lm]

_Z <G[m] m | 1 L (HM o) [m])2+)\3,0[m]|> T,

Note: The factor % is added to the L2 regularization to simplify the
notation as shown in the second step. This does not impact estimation
since we can just define Ao = 2.
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RISK MINIMIZATION /5
[m]
t

Computing the derivative for a terminal node constant value c¢; * yields

aR[m]
5 = (GI™ + sign () As) + (HI™ + Xo) .
Ct

The optimal constants 61[m], . 6[:[7),] can then be calculated as

Mt:1...rlm1

m _
’ H™ 4

c
with
X+ A3 forx < —M\3

the(x) =10 for |x| < A3
X — Az forx > As.
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LOSS MINIMIZATION - SPLIT FINDING

To evaluate the performance of a candidate split that divides the

instances in region F?t[m] into a left and right node we use the risk

reduction achieved by that split:

2 2 2
o 1| b (Gz[f']> By (G%’U By (Gl[‘m])
A R BT IS — A
2 HtL + Ao HtR + Ao Ht + Ao

where the subscripts L and R denote the left and right leaves after the
split.
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LOSS MINIMIZATION - SPLIT FINDING /2

Algorithm (Exact) Algorithm for split finding

1: Input /: instance set of current node
2: Input p: dimension of feature space
3: gain<+ 0

4: G+ 3, 9(x), H+ 3, h(xD)
5: forj=1— pdo

6: GL+0,H +0

7: for i in sorted(/, by x;) do

8: GL + G+ g(x), H. + Hy + h(x)
9: GR(*GfGL,HR(—HfHL
10: compute QLH
11: end for
12: end for
13: Output Split with maximal 3.5
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