
Introduction to Machine Learning

Boosting
Gradient Boosting: Deep Dive XGBoost
Optimization

Learning goals
Understand details of the regularized
risk in XGBoost

Understand approximation of loss
used in optimization

Understand split finding algorithm

RISK MINIMIZATION

XGBoost uses a risk function with 3 regularization terms:

R[m]
reg =

n∑
i=1

L
(

y (i), f [m−1](x(i)) + b[m](x(i))
)

+ λ1J1(b[m]) + λ2J2(b[m]) + λ3J3(b[m]),

with J1(b[m]) = T [m] the number of leaves in the tree to penalize tree
depth.

J2(b[m]) =
∥∥c[m]

∥∥2
2 and J3(b[m]) =

∥∥c[m]
∥∥

1 are L2 and L1 penalties of

the terminal region values c[m]
t , t = 1, . . . ,T [m].

We define J(b[m]) := λ1J1(b[m]) + λ2J2(b[m]) + λ3J3(b[m]).

© Introduction to Machine Learning – 1 / 7

RISK MINIMIZATION / 2

To approximate the loss in iteration m, a second-order Taylor expansion
around f [m−1](x) is computed:

L(y , f [m−1](x) + b[m](x)) ≈

L(y , f [m−1](x)) + g[m](x)b[m](x) +
1
2

h[m](x)b[m](x)2,

with gradient

g[m](x) =
∂L(y , f [m−1](x))

∂f [m−1](x)

and Hessian

h[m](x) =
∂2L(y , f [m−1](x))

∂f [m−1](x)2 .

Note: g[m](x) are the negative pseudo-residuals −r̃ [m] we use in
standard gradient boosting to determine the direction of the update.

© Introduction to Machine Learning – 2 / 7

RISK MINIMIZATION / 3

Since L(y , f [m−1](x)) is constant, the optimization simplifies to

R[m]
reg =

n∑
i=1

g[m](x(i))b[m](x(i)) +
1
2

h[m](x(i))b[m](x(i))2 + J(b[m]) + const

∝
T [m]∑
t=1

∑
x(i)∈R[m]

t

g[m](x(i))c[m]
t +

1
2

h[m](x(i))(c[m]
t)2 + J(b[m])

=
T [m]∑
t=1

G[m]
t c[m]

t +
1
2

H [m]
t (c[m]

t)2 + J(b[m]).

Where G[m]
t and H [m]

t are the accumulated gradient and Hessian values
in terminal node t .

© Introduction to Machine Learning – 3 / 7

RISK MINIMIZATION / 4

Expanding J(b[m]):

R[m]
reg =

T [m]∑
t=1

(
G[m]

t c[m]
t +

1
2

H [m]
t (c[m]

t)2 +
1
2
λ2(c

[m]
t)2 + λ3|c[m]

t |
)
+ λ1T [m]

=
T [m]∑
t=1

(
G[m]

t c[m]
t +

1
2
(H [m]

t + λ2)(c
[m]
t)2 + λ3|c[m]

t |
)
+ λ1T [m].

Note: The factor 1
2 is added to the L2 regularization to simplify the

notation as shown in the second step. This does not impact estimation
since we can just define λ2 = 2λ̃2.

© Introduction to Machine Learning – 4 / 7

RISK MINIMIZATION / 5

Computing the derivative for a terminal node constant value c[m]
t yields

∂R[m]
reg

∂c[m]
t

= (G[m]
t + sign (cm

t)λ3) + (H [m]
t + λ2)cm

t .

The optimal constants ĉ[m]
1 , . . . , ĉ[m]

T [m] can then be calculated as

ĉ[m]
t = −

tλ3

(
G[m]

t

)
H [m]

t + λ2

, t = 1, . . .T [m],

with

tλ3(x) =

x + λ3 for x < −λ3

0 for |x | ≤ λ3

x − λ3 for x > λ3.

© Introduction to Machine Learning – 5 / 7

LOSS MINIMIZATION - SPLIT FINDING

To evaluate the performance of a candidate split that divides the
instances in region R[m]

t into a left and right node we use the risk
reduction achieved by that split:

S̃LR =
1
2

 tλ3

(
G[m]

tL

)2

H [m]
tL + λ2

+
tλ3

(
G[m]

tR

)2

H [m]
tR + λ2

−
tλ3

(
G[m]

t

)2

H [m]
t + λ2

− λ1,

where the subscripts L and R denote the left and right leaves after the
split.

© Introduction to Machine Learning – 6 / 7

LOSS MINIMIZATION - SPLIT FINDING / 2

Algorithm (Exact) Algorithm for split finding
1: Input I: instance set of current node
2: Input p: dimension of feature space
3: gain← 0
4: G←

∑
i∈I g(x(i)),H ←

∑
i∈I h(x(i))

5: for j = 1→ p do
6: GL ← 0,HL ← 0
7: for i in sorted(I, by xj) do
8: GL ← GL + g(x(i)),HL ← HL + h(x(i))
9: GR ← G − GL,HR ← H − HL

10: compute S̃LR

11: end for
12: end for
13: Output Split with maximal S̃LR

© Introduction to Machine Learning – 7 / 7

