Introduction to Machine Learning

Boosting
Gradient Boosting: lllustration

b o o Learning goals

*' 3 £ @ See simple visualizations of boosting
o ”/”T“'ﬂ %” M‘» in regression
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GRADIENT BOOSTING ILLUSTRATION - GAM
GAM / Splines as BL and compare L2 vs. L1 loss.

@ L2: Init = optimal constant = mean(y); for L1 it's median(y)
@ BLs are cubic B-splines with 40 knots.

@ PRs L2: F(f) = r(f) = y — f(x)

@ PRs L1: F(f) = sign(y — f(x))

@ Constant learning rate 0.2
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GAM WITH L2 VS L1 LOSS

Top: L2 loss, bottom: L1 loss
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Iteration 1

Shape of PRs affects gradual model fit: L1 only sees resids’ sign, BLs are not affected
size of values as in L2 and hence lead to more moderate changes.
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GAM WITH L2 VS L1 LOSS

Top: L2 loss, bottom: L1 loss
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Iteration 2

Shape of PRs affects gradual model fit: L1 only sees resids’ sign, BLs are not affected
size of values as in L2 and hence lead to more moderate changes.
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GAM WITH L2 VS L1 LOSS

Top: L2 loss, bottom: L1 loss
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Iteration 3

Shape of PRs affects gradual model fit: L1 only sees resids’ sign, BLs are not affected
size of values as in L2 and hence lead to more moderate changes.
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GAM WITH L2 VS L1 LOSS

Top: L2 loss, bottom: L1 loss
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Iteration 10

Shape of PRs affects gradual model fit: L1 only sees resids’ sign, BLs are not affected
size of values as in L2 and hence lead to more moderate changes.
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GAM WITH L2 VS L1 LOSS

Top: L2 loss, bottom: L1 loss
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Iteration 100

Shape of PRs affects gradual model fit: L1 only sees resids’ sign, BLs are not affected
size of values as in L2 and hence lead to more moderate changes.
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GAM WITH HUBER LOSS
Top: d = 2, bottom: § = 0.2.
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Iteration 10

For small §, PRs are often bounded, resulting in L1-like behavior,
while the upper plot more closely resembles L2 loss.
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GAM WITH OUTLIERS

Instead of Gaussian noise, let’s use t-distrib, that leads to outliers in y.
Top: L2, bottom: L1.
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Iteration 10

L2 loss is affected by outliers rather strongly, whereas L1 solely considers residuals’
sign and not their magnitude, resulting in a more robust model.
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GAM WITH OUTLIERS

Instead of Gaussian noise, let’s use t-distrib, that leads to outliers in y.
Top: L2, bottom: L1.
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Iteration 100

L2 loss is affected by outliers rather strongly, whereas L1 solely considers residuals’
sign and not their magnitude, resulting in a more robust model.
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LM WITH L2 VS L1 LOSS
Top: L2, bottom: L1.
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Iteration 1
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L2: as 7(f) = r(f), BL of 1st iter already optimal; but learn rate slows us down.
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LM WITH L2 VS L1 LOSS

Top: L2, bottom: L1.

o
]
s
3
05 2 05 x %
x
H o a0
S XXX
] x
> 00 00 x X x
2 x xx Xy oK X xx X
a x x Xx.
4 x—X x
05 5'05 xx
5
10 S0
00 25 50 75 100
10 @
©
S ox xoxoxoxxx o ox o x X XUOHAXRHAX HXXHKXK X
05 ]
S
> 00 So
3
2
4
05 =
Bl 000X X X XK XN XRRKXKK XX x e
5
10 ©
00 25 50 75 100
x x

Iteration 10

L2: as F(f) = r(f), BL of 1st iter already optimal; but learn rate slows us down.
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LM WITH L2 VS L1 LOSS
Top: L2, bottom: L1.
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Iteration 100

L2: as 7(f) = r(f), BL of 1st iter already optimal; but learn rate slows us down.
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