
Introduction to Machine Learning

Boosting
Gradient Boosting: Concept

Learning goals
Understand idea of forward
stagewise modelling

Understand fitting process of gradient
boosting for regression problems

FORWARD STAGEWISE ADDITIVE MODELING

Assume a regression problem for now (as this is simpler to explain);
and assume a space of base learners B.

We want to learn an additive model:

f (x) =
M∑

m=1

α[m]b(x,θ[m]).

Hence, we minimize the empirical risk:

Remp(f) =
n∑

i=1

L
(

y (i), f
(

x(i)
))

=
n∑

i=1

L

(
y (i),

M∑
m=1

α[m]b(x(i),θ[m])

)

© Introduction to Machine Learning – 1 / 15

FORWARD STAGEWISE ADDITIVE MODELING / 2

Why is gradient boosting a good choice for this problem?

Because of the additive structure it is difficult to jointly minimize
Remp(f) w.r.t.

((
α[1],θ[1]

)
, . . . ,

(
α[M],θ[M]

))
, which is a very

high-dimensional parameter space (though this is less of a
problem nowadays, especially in the case of numeric parameter
spaces).

Considering trees as base learners is worse as we would have to
grow M trees in parallel so they work optimally together as an
ensemble.

Stagewise additive modeling has nice properties, which we want to
make use of, e.g. for regularization, early stopping, . . .

© Introduction to Machine Learning – 2 / 15

FORWARD STAGEWISE ADDITIVE MODELING / 3

Hence, we add additive components in a greedy fashion by sequentially
minimizing the risk only w.r.t. the next additive component:

min
α,θ

n∑
i=1

L
(

y (i), f̂ [m−1]
(

x(i)
)
+ αb

(
x(i),θ

))

Doing this iteratively is called forward stagewise additive modeling.

Algorithm Forward Stagewise Additive Modeling.
1: Initialize f̂ [0](x) with loss optimal constant model
2: for m = 1→ M do

3: (ˆα[m], θ̂[m]) = argmin
α,θ

n∑
i=1

L
(

y (i), f̂ [m−1]
(

x(i)
)
+ αb

(
x(i),θ

))
4: Update f̂ [m](x)← f̂ [m−1](x) + ˆα[m]b

(
x, θ̂[m]

)
5: end for

© Introduction to Machine Learning – 3 / 15

GRADIENT BOOSTING
The algorithm we just introduced is not really an algorithm, but rather an abstract

principle. We need to find the new additive component b
(

x,θ[m]
)

and its weight

coefficient α[m] in each iteration m. This can be done by gradient descent, but in
function space.

Thought experiment: Consider a
completely non-parametric model f
whose predictions we can arbitrarily
define on every point of the training
data x(i). So we basically specify f as
a discrete, finite vector.(

f
(

x(1)
)
, . . . , f

(
x(n)

))⊤

This implies n parameters f
(

x(i)
)

(and the model would provide no
generalization...).
Furthermore, we assume our loss
function L(·) to be differentiable.

© Introduction to Machine Learning – 4 / 15

GRADIENT BOOSTING

Aim: Define a movement in function space so we can push our current
function towards the data points.

Given: Regression problem with one feature x and target variable y .

Initialization: Set all parameters to the optimal constant value (e.g.,
the mean of y for L2).

© Introduction to Machine Learning – 5 / 15

PSEUDO RESIDUALS
How do we have to distort this function to move it towards the observations and drive
loss down?

We minimize the risk of such a model with gradient descent (yes, this makes no sense,
suspend all doubts for a few seconds).
So, we calculate the gradient at a point of the parameter space, that is, the derivative
w.r.t. each component of the parameter vector (which is 0 for all terms with i ̸= j):

r̃ (i) = − ∂Remp

∂f (x(i))
= −

∂
∑

j L(y (j), f (x(j)))

∂f (x(i))
= −

∂L
(

y (i), f
(

x(i)
))

∂f (x(i))
.

Reminder: The pseudo-residuals r̃ (f)
match the usual residuals for the
squared loss:

−∂L (y , f (x))
∂f (x)

= −∂0.5(y − f (x))2

∂f (x)

= y − f (x)

© Introduction to Machine Learning – 6 / 15

BOOSTING AS GRADIENT DESCENT

Combining this with the iterative additive procedure of “forward
stagewise modeling”, we are at the spot f [m−1] during minimization. At
this point, we now calculate the direction of the negative gradient or
also called pseudo-residuals r̃ [m](i):

r̃ [m](i) = −

[
∂L
(
y (i), f

(
x(i)
))

∂f (x(i))

]
f=f [m−1]

The gradient descent update for each vector component of f is:

f [m](x(i)) = f [m−1](x(i))− α
∂L
(
y (i), f

(
x(i)
))

∂f [m−1](x(i))
.

This tells us how we could “nudge” our whole function f in the direction
of the data to reduce its empirical risk.

© Introduction to Machine Learning – 7 / 15

GRADIENT BOOSTING

Iteration 1:
Let’s move our function f

(
x(i)
)

a fraction towards the pseudo-residuals
with a learning rate of α = 0.6.

© Introduction to Machine Learning – 8 / 15

GRADIENT BOOSTING / 2

Iteration 2:
Let’s move our function f

(
x(i)
)

a fraction towards the pseudo-residuals
with a learning rate of α = 0.6.

© Introduction to Machine Learning – 9 / 15

GRADIENT BOOSTING / 3

To parameterize a model in this way is pointless, as it just memorizes the instances of
the training data.

So, we restrict our additive components to b
(

x,θ[m]
)
∈ B.

The pseudo-residuals are calculated exactly as stated above, then we fit a simple
model b(x,θ[m]) to them:

θ̂[m] = argmin
θ

n∑
i=1

(
r̃ [m](i) − b(x(i),θ)

)2
.

So, evaluated on the training data, our
b(x,θ[m]) corresponds as closely as
possible to the negative loss function
gradient and generalizes over the
whole space.

© Introduction to Machine Learning – 10 / 15

GRADIENT BOOSTING / 4

In a nutshell: One boosting iteration is exactly one approximated gradient descent
step in function space, which minimizes the empirical risk as much as possible.

Iteration 1:

© Introduction to Machine Learning – 11 / 15

GRADIENT BOOSTING / 5

Instead of moving the function values for each observation by a fraction closer to the
observed data, we fit a regression base learner to the pseudo-residuals (right plot).

Iteration 2:

© Introduction to Machine Learning – 12 / 15

GRADIENT BOOSTING / 6

This base learner is then added to the current state of the ensemble weighted by the
learning rate (here: α = 0.4) and for the next iteration again the pseudo-residuals of
the adapted ensemble are calculated and a base learner is fitted to them.

Iteration 3:

© Introduction to Machine Learning – 13 / 15

GRADIENT BOOSTING ALGORITHM

Algorithm Gradient Boosting Algorithm.

1: Initialize f̂ [0](x) = argminθ0∈R

n∑
i=1

L(y (i), θ0)

2: for m = 1→ M do
3: For all i : r̃ [m](i) = −

[
∂L(y,f)

∂f

]
f=f̂ [m−1](x(i)),y=y(i)

4: Fit a regression base learner to the vector of pseudo-residuals r̃ [m]:

5: θ̂[m] = argmin
θ

n∑
i=1

(r̃ [m](i) − b(x(i),θ))2

6: Set α[m] to α being a small constant value or via line search
7: Update f̂ [m](x) = f̂ [m−1](x) + α[m]b(x, θ̂[m])
8: end for
9: Output f̂ (x) = f̂ [M](x)

Note that we also initialize the model in a loss-optimal manner.

© Introduction to Machine Learning – 14 / 15

LINE SEARCH

The learning rate in gradient boosting influences how fast the algorithm
converges. Although a small constant learning rate is commonly used
in practice, it can also be replaced by a line search.

Line search is an iterative approach to find a local minimum. In the case
of setting the learning rate, the following one-dimensional optimization
problem has to be solved:

α̂[m] = argmin
α

n∑
i=1

L(y (i), f [m−1](x) + αb(x, θ̂[m]))

Optionally, an (inexact) backtracking line search can be used to find the
α[m] that minimizes the above equation.

© Introduction to Machine Learning – 15 / 15

