Introduction to Machine Learning

Boosting
Gradient Boosting: Concept

0s Learning goals

@ Understand idea of forward

g o0 : stagewise modelling
. @ Understand fitting process of gradient
) ol boosting for regression problems
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FORWARD STAGEWISE ADDITIVE MODELING

Assume a regression problem for now (as this is simpler to explain);
and assume a space of base learners B.

We want to learn an additive model:
M
f(x) = > al™p(x, 6.
m=1
Hence, we minimize the empirical risk:

n

M
Remp() = > L (y(i)7 f (,4/))) _ Z": L <y(f), 3 alb(x, 9[m1)>
i=1

i=1 m=1
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FORWARD STAGEWISE ADDITIVE MODELING /2

Why is gradient boosting a good choice for this problem?

@ Because of the additive structure it is difficult to jointly minimize
Remp(f) wert. ((all,000) .0 (™ M), which is a very
high-dimensional parameter space (though this is less of a
problem nowadays, especially in the case of numeric parameter
spaces).

@ Considering trees as base learners is worse as we would have to
grow M trees in parallel so they work optimally together as an
ensemble.

@ Stagewise additive modeling has nice properties, which we want to
make use of, e.g. for regularization, early stopping, ...

Introduction to Machine Learning — 2/ 15

X X



FORWARD STAGEWISE ADDITIVE MODELING /3

Hence, we add additive components in a greedy fashion by sequentially
minimizing the risk only w.r.t. the next additive component:

min L (0771 (x0) 1 ab (x0,0))

Doing this iteratively is called forward stagewise additive modeling.

Algorithm Forward Stagewise Additive Modeling.

1: Initialize 71%(x) with loss optimal constant model
2:form=1— Mdo

P n oo , ,
3: (alm, 6™y = argmin S L (y(’), flm=11 (x(’)) + ab (x('), 0))

«,0 =1

4:  Update f1(x) « "= "(x) + olmlp (x, é[m])
5: end for
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GRADIENT BOOSTING

The algorithm we just introduced is not really an algorithm, but rather an abstract
principle. We need to find the new additive component b (x, 9[’"]) and its weight

coefficient ol™ in each iteration m. This can be done by gradient descent, but in

function space.

Thought experiment: Consider a
completely non-parametric model f
whose predictions we can arbitrarily
define on every point of the training
data x. So we basically specify f as
a discrete, finite vector.

(f(;é”),...,f()é")))T

This implies n parameters f (x(i))
(and the model would provide no
generalization...).

Furthermore, we assume our loss
function L(-) to be differentiable.
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GRADIENT BOOSTING

Aim: Define a movement in function space so we can push our current
function towards the data points.
Given: Regression problem with one feature x and target variable y.
Initialization: Set all parameters to the optimal constant value (e.g.,
the mean of y for L2).
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PSEUDO RESIDUALS

How do we have to distort this function to move it towards the observations and drive x
loss down?

We minimize the risk of such a model with gradient descent (yes, this makes no sense, x

suspend all doubts for a few seconds).

So, we calculate the gradient at a point of the parameter space, that is, the derivative

w.r.t. each component of the parameter vector (which is 0 for all terms with i = j): x x

) ORemp _ 92 LoD, f(x))  OL (y(f)7 f (xm))

o af(x) of (x() B af (x()

Reminder: The pseudo-residuals 7 (f) 4

match the usual residuals for the 2 )

squared loss: >
0
_OL(y.f(x)) _ _90.5(y — f(x))? 2
Of(x) Of(x) , 1 . . ,
=y —f(x) x
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BOOSTING AS GRADIENT DESCENT

Combining this with the iterative additive procedure of “forward
stagewise modeling”, we are at the spot /™~ during minimization. At
this point, we now calculate the direction of the negative gradient or
also called pseudo-residuals FIm():

() _ [é?L (Y, f (x(/)))]
af(x(l)) f=flm—1]

The gradient descent update for each vector component of f is:
oL (y, f (x(0))
oftm=11(x(1))

This tells us how we could “nudge” our whole function f in the direction
of the data to reduce its empirical risk.

flml (x(i)) - f[m—ﬂ(x(f)) PN
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GRADIENT BOOSTING

Iteration 1:
Let’s move our function f (x(’)) a fraction towards the pseudo-residuals
with a learning rate of a = 0.6.
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GRADIENT BOOSTING /2

Iteration 2:

Let’s move our function f (x(’)) a fraction towards the pseudo-residuals
with a learning rate of a = 0.6.
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GRADIENT BOOSTING /3

To parameterize a model in this way is pointless, as it just memorizes the instances of
the training data.

So, we restrict our additive components to b (x, 9[m]) e B.

The pseudo-residuals are calculated exactly as stated above, then we fit a simple
model b(x, 81™) to them:

n

A . . 2

6™ = argmin E (?[m](') — b(x", 9)) .
LA

So, evaluated on the training data, our T
b(x, 8™ corresponds as closely as 0s

possible to the negative loss function
gradient and generalizes over the )
whole space. ‘,
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GRADIENT BOOSTING /4

In a nutshell: One boosting iteration is exactly one approximated gradient descent
step in function space, which minimizes the empirical risk as much as possible.

Iteration 1:
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GRADIENT BOOSTING /5

Instead of moving the function values for each observation by a fraction closer to the
observed data, we fit a regression base learner to the pseudo-residuals (right plot).

Iteration 2:
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GRADIENT BOOSTING /6

This base learner is then added to the current state of the ensemble weighted by the
learning rate (here: a = 0.4) and for the next iteration again the pseudo-residuals of
the adapted ensemble are calculated and a base learner is fitted to them.
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GRADIENT BOOSTING ALGORITHM

Algorithm Gradient Boosting Algorithm.

~ n B
1: Initialize 7% (x) = arg miny, c >° L(y, 6o)
i=1

form=1— Mdo

For all iz FM0) — _ [M]
O ] p=im =11 () y=y )

2:
3
4 Fit a regression base learner to the vector of pseudo-residuals Fml:
~ n » B
5. Q" = argmin 3 (MO — p(x, 9))?
0 =t
6:  Set ol to o being a small constant value or via line search
7:  Update fI™(x) = A"~ "(x) + ol b(x, §1™)
8: end for
9: Output 7(x) = ™(x)

Note that we also initialize the model in a loss-optimal manner.
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LINE SEARCH

The learning rate in gradient boosting influences how fast the algorithm
converges. Although a small constant learning rate is commonly used
in practice, it can also be replaced by a line search.

Line search is an iterative approach to find a local minimum. In the case
of setting the learning rate, the following one-dimensional optimization
problem has to be solved:

n

alm = arg min Z Ly, fAm=1(x) + ab(x, OL™))

o=

Optionally, an (inexact) backtracking line search can be used to find the
al™ that minimizes the above equation.
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