Introduction to Machine Learning

Boosting Gradient Boosting with Trees 1

Learning goals

- Examples for GB with trees
- Understand relationship between model structure and interaction depth

GRADIENT BOOSTING WITH TREES

Trees are most popular BLs in GB.

Reminder: advantages of trees

- No problems with categorical features.
- No problems with outliers in feature values.
- No problems with missing values.
- No problems with monotone transformations of features.
- Trees (and stumps!) can be fitted quickly, even for large *n*.
- Trees have a simple, built-in type of variable selection.

GB with trees inherits these, and strongly improves predictive power.

 $\overline{\mathbf{C}}$

Simulation setting:

- Given: one feature *x* and one numeric target variable *y* of 50 observations.
- *x* is uniformly distributed between 0 and 10.
- *y* depends on *x* as follows: $y^{(i)} = \sin(x^{(i)}) + \epsilon^{(i)}$ with $\epsilon^{(i)} \sim \mathcal{N}(0, 0.01)$, ∀*i* ∈ {1, . . . , 50}.

 $\left\langle \right\rangle$ \times

Aim: we want to fit a gradient boosting model to the data by using stumps as base learners.

Since we are facing a regression problem, we use *L*2 loss.

EXAMPLE 1 / 2

Iteration 0: initialization by optimal constant (mean) prediction $\hat{f}^{[0](i)}(x) = \bar{y} \approx 0.2$.

EXAMPLE 1 / 3

Iteration 1: (1) Calculate pseudo-residuals $\tilde{r}^{[m](i)}$ and (2) fit a regression stump $b^{[m]}$.

(3) Update model by $\hat{f}^{[1]}(x) = \hat{f}^{[0]}(x) + \hat{b}^{[1]}.$

Repeat step (1) to (3) :

X **XX**

Repeat step (1) to (3) :

X **XX**

Repeat step (1) to (3) :

X X X

This [website](http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html) shows on various 3D examples how tree depth and number of iterations influence the model fit of a GBM with trees.

X $\times\overline{\times}$

MODEL STRUCTURE AND INTERACTION DEPTH

Model structure directly influenced by depth of $b^{|m|}(\mathbf{x})$.

$$
f(\mathbf{x}) = \sum_{m=1}^{M} \alpha^{[m]} b^{[m]}(\mathbf{x})
$$

Remember how we can write trees as additive model over paths to leafs.

With stumps (depth = 1), $f(\mathbf{x})$ is additive model (GAM) without interactions:

$$
f(\mathbf{x}) = f_0 + \sum_{j=1}^p f_j(x_j)
$$

With trees of depth 2, we have two-way interactions:

$$
f(\mathbf{x}) = f_0 + \sum_{j=1}^p f_j(x_j) + \sum_{j \neq k} f_{j,k}(x_j, x_k)
$$

with f_0 being a constant intercept.

MODEL STRUCTURE AND INTERACTION DEPTH / 2

Simulation setting:

- Features x_1 and x_2 and numeric *y*; with $n = 500$
- x_1 and x_2 are uniformly distributed between -1 and 1
- $y^{(i)} = x_1^{(i)} x_2^{(i)} + 5\cos(5x_2^{(i)})$ $\mathbf{x}_1^{(i)}$) · $\mathbf{x}_1^{(i)} + \epsilon^{(i)}$ with $\epsilon^{(i)} \sim \mathcal{N}(0, 1)$
- We fit 2 GB models, with tree depth 1 and 2, respectively.

 $\mathbf{\times}$

MODEL STRUCTURE AND INTERACTION DEPTH / 3

GBM with interaction depth of 1 (GAM)

No interactions are modelled: Marginal effects of x_1 and x_2 add up to joint effect (plus the constant intercept $\hat{f}_0 = -0.07$).

 \times \times

© Introduction to Machine Learning – 9 / 10

MODEL STRUCTURE AND INTERACTION DEPTH / 4

GBM with interaction depth of 2

Interactions between x_1 and x_2 are modelled: Marginal effects of x_1 and *x*₂ do NOT add up to joint effect due to interaction effects.

 \times \times