Introduction to Machine Learning

Boosting Gradient Boosting: CWB Basics 2

Learning goals

- Handling of categorical features
- Intercept handling
- Practical example

HANDLING OF CATEGORICAL FEATURES

Feature x_i with G categories. Two options for encoding:

• One base learner to simultaneously estimate all categories:

$$b_j(x_j|\theta_j) = \sum_{g=1}^G \theta_{j,g} \mathbb{1}_{\{g=x_j\}} = (\mathbb{1}_{\{x_j=1\}}, ..., \mathbb{1}_{\{x_j=G\}})\theta_j$$

Hence, b_j incorporates a one-hot encoded feature with group means $\theta \in \mathbb{R}^G$ as estimators.

• One binary base learner per category:

$$b_{j,g}(x_j|\theta_{j,g}) = \theta_{j,g} \mathbb{1}_{\{g=x_j\}}$$

Including all categories of the feature means adding G base learners $b_{i,1}, \ldots, b_{i,G}$

HANDLING OF CATEGORICAL FEATURES /2

Advantages of simultaneously handling all categories in CWB:

- Much faster estimation compared to using individual binary BLs
- Explicit solution of $\hat{\theta} = \arg\min_{\theta \in \mathbb{R}^G} \sum_{i=1}^n (y^{(i)} b_j(x_j^{(i)} | \theta))^2$:

$$\hat{\theta}_g = n_g^{-1} \sum_{i=1}^n y^{(i)} \mathbb{1}_{\{x_j^{(i)} = g\}}$$

• For features with many categories we usually add a ridge penalty

HANDLING OF CATEGORICAL FEATURES /3

Advantages of including categories individually in CWB:

- Enables finer selection since non-informative categories are simply not included in the model.
- Explicit solution of $\hat{\theta}_{j,g} = \arg\min_{\theta \in \mathbb{R}} \sum_{i=1}^n (y^{(i)} b_g(x_j^{(i)}|\theta))^2$ with:

$$\hat{\theta}_{j,g} = n_g^{-1} \sum_{i=1}^n y^{(i)} \mathbb{1}_{\{x_j^{(i)} = g\}}$$

Disadvantage of individually handling all categories in CWB:

- Fitting CWB is slower
- Penalization and selection become difficult since base learner has exactly one degree of freedom.

INTERCEPT HANDLING

There are two options to handle the intercept in CWB. In both, the loss-optimal constant $f^{[0]}(\mathbf{x})$ is an initial model intercept.

- Include an intercept BL:
 - Add BL $b_{\text{int}} = \theta$ as potential candidate considered in each iteration and remove intercept from all linear BLs, i.e., $b_j(\mathbf{x}) = \theta_j x_j$.
 - Final intercept is given as $f^{[0]}(\mathbf{x}) + \hat{\theta}$. Linear BLs without intercept only make sense if covariates are centered (see Hofner et al. 2014 tutorial, p. 7)
- Include intercept in each linear BL and aggregate into global intercept post-hoc:
 - Assume linear base learners $b_j(\mathbf{x}) = \theta_{j1} + \theta_{j2}x_j$. If base learner \hat{b}_j with parameter $\hat{\theta}^{[1]} = (\hat{\theta}_{j1}^{[1]}, \hat{\theta}_{j1}^{[1]})$ is selected in first iteration, model intercept is updated to $f^{[0]}(\mathbf{x}) + \hat{\theta}_{j1}^{[1]}$.
 - During training, intercept is adjusted M times to yield $f^{[0]}(\mathbf{x}) + \sum\limits_{m=1}^{M} \hat{\theta}_{j1}^{[m]}$

Consider the life expectancy data set (WHO, available on Kumar 2019): regression task to predict life expectancy.

We fit a CWB model with linear BLs (with intercept)

variable	description
Life.expectancy	Life expectancy in years
Country	The country (just a selection GER, USE, SWE, ZAF, and ETH)
Year	The recorded year
BMI	Average BMI $= \frac{\text{body weight in kg}}{(\text{Height in m})^2}$ in a year and country
Adult.Mortality	Adult mortality rates per 1000 population

Using compboost with M=150 iterations, we can visualize which BL was selected when and how the estimated feature effects evolve over time.

