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NONLINEAR BASE LEARNERS

As an alternative we can use nonlinear base learners, such as P- or
B-splines, which make the model equivalent to a generalized additive
model (GAM) (as long as the base learners keep their additive
structure, which is the case for splines).

© Introduction to Machine Learning – 1 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



EXAMPLE: LIFE EXPECTANCY (NONLINEAR)

© Introduction to Machine Learning – 2 / 9



NONLINEAR EFFECT DECOMPOSITION
Kneib, Hothorn, and Tutz 2009 proposed a decomposition of each base learner

into a constant, a linear and a nonlinear part. The boosting algorithm
will automatically decide which feature to include – linear, nonlinear, or
none at all:

bj(xj ,θ
[m]) = bj,const(xj ,θ

[m]) + bj,lin(xj ,θ
[m]) + bj,nonlin(xj ,θ

[m])

= θ
[m]
j,const + xj · θ[m]

j,lin + sj(xj ,θ
[m]
j,nonlin),

where

θj,const is the intercept of feature j ,

xj · θ[m]
j,lin is a feature-specific linear base learner, and

sj(xj ,θ
[m]
j,nonlin) is a (centered) nonlinear base learner capturing deviation

from the linear effect

Careful: We usually also apply an orthogonalization procedure on top of this
but skip technical details here.
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https://epub.ub.uni-muenchen.de/2063/1/tr003.pdf


NONLINEAR EFFECT DECOMPOSITION

Suppose n = 100 uniformly distributed x values between 0 and 10.

The response y = 2 sin(x) + x + 2 + ε has a nonlinear and linear
component (ε ∼ N (0, 1

2)).

We apply CWB with M = 500 to {(x(i), y (i))}n
i=1 with:

One model with B = {bj,lin, bj,nonlin}
One model with B = {bj,lin, bj,nonlinc}
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FAIR BASE LEARNER SELECTION

Using splines and linear base learners in CWB will favor the more
complex spline BLs over the linear BLs

This makes it harder to achieve the desired behavior of the base
learner decomposition as explained previously

To conduct a fair base learner selection, we set the degrees of
freedom of all base learners equal

The idea is to set a single learner’s regularization/penalty term so
that their complexity is treated equally

We also skip some technical details here
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AVAILABLE BASE LEARNERS

There is a large number of possible base learners, e.g.:

Linear effects and interactions (with or without intercept)

Uni- or multivariate splines and tensor product splines

Trees

Random effects and Markov random fields

Effects of functional covariates

...

In combination with the flexible choice of loss functions, boosting can
be applied to fit a huge class of models.

Recent extensions include distributional regression (GAMLSS), where
multiple additive predictors are boosted to model all distributional
parameters (e.g., cond. mean and variance for a Gaussian model).
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PARTIAL DEPENDENCE PLOTS

If we use single features in base learners, we consider each BL as a
wrapper around a feature representing the feature’s effect on the target.
BLs can be selected more than once (with varying parameter
estimates), signaling that this feature is more important.
E.g. let j ∈ {1, 2, 3}, the first three iterations might look as follows

m = 1 : f̂ [1](x) = f̂ [0] + αb̂2(x2, θ̂
[1])

m = 2 : f̂ [2](x) = f̂ [1] + αb̂3(x3, θ̂
[2])

m = 3 : f̂ [3](x) = f̂ [2] + αb̂2(x2, θ̂
[3])

Due to linearity, b̂2 base learners can be aggregated:

f̂ [3](x) = f̂ [0] + α(b̂2(x2, θ̂
[1] + θ̂[3]) + b̂3(x3, θ̂

[2]))

Which is equivalent to: f̂ [3](x) = f̂0 + f̂2(x2) + f̂3(x3).
Hence, f̂ can be decomposed into the marginal feature effects (PDPs).
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FEATURE IMPORTANCE

We can further exploit the additive structure of the boosted
ensemble to compute measures of variable importance.

To this end, we simply sum for each feature xj the improvements in
empirical risk achieved over all iterations until 1 < mstop ≤ M:

VIj =
mstop∑
m=1

(
Remp

(
f [m−1](x)

)
−Remp

(
f [m](x)

))
· I[j∈j [m])],

© Introduction to Machine Learning – 8 / 9



TAKE-HOME MESSAGE

Componentwise gradient boosting is the statistical re-interpretation
of gradient boosting

We can fit a large number of statistical models, even in high
dimensions (p ≫ n)

A drawback compared to statistical models is that we do not get
valid inference for coefficients → post-selection inference

In most cases, gradient boosting with trees will dominate
componentwise boosting in terms of performance due to its
inherent ability to include higher-order interaction terms
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