Introduction to Machine Learning

Advanced Risk Minimization
Loss functions and tree splitting
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S ] e @ Brier score minimization corresponds
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BERNOULLI LOSS MIN = ENTROPY SPLITTING

For an introduction on trees and splitting criteria we refer our I2ML

lecture (Chapter 6, CEEIEERIETD)

When fitting a tree we minimize the risk within each node N by risk
minimization and predict the optimal constant. Another common
approach is to minimize the average node impurity Imp(\).

Claim: Entropy splitting Imp(N) = — Y7 _, 7rk M) log 7T(N) is equivalent
to minimize risk measured by the Bernoulli loss.

Note that 7" := ﬁ > [y =k
(xy)EN

Proof: To prove this we show that the risk related to a subset of
observations A/ C D fulfills R(N') = naImp(N),
where R(N) is calculated w.r.t. the (multiclass) Bernoulli loss

L(y,( Z[y = K] log (m(x))
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https://slds-lmu.github.io/i2ml/chapters/06_cart/

BERNOULLI LOSS MIN = ENTROPY SPLITTING /2
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[y = K]log 7Tk(X)>
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> Iy =kllogn™)

9
= —ny ZTF,((N) log W,((N) = nxImp(N),
k=1

where in *) the optimal constant per node n,((N) = * > [y = k] was plugged in.
(x,y)EN
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BRIER SCORE MINIMIZATION = GINI SPLITTING

When fitting a tree we minimize the risk within each node N by risk
minimization and predict the optimal constant. Another approach that is
common in literature is to minimize the average node impurity Imp(/\/).

Claim: Gini splitting Imp(N) = >7_, w,((N) (1 — w,((N)) is equivalent to

the Brier score minimization.

Note that 7¢") := w2 ly=x
(xy)EN

Proof: We show that the risk related to a subset of observations N' C D fulfills
R(N) = nylmp(N),
where Imp is the Gini impurity and R(N) is calculated w.r.t. the (multiclass) Brier score

g

Ly, w(x)) = > ([y = k] — m(x))*.

k=1
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BRIER SCORE MINIMIZATION = GINI SPLITTING /2

R0 = % S =k-m@F=> 3 (y=n- %)
N N v
y)E k=1 k=1 (x,y)€ x

by plugging in the optimal constant prediction w.r.t. the Brier score (nxr« is defined as

the number of class k observations in node N): x x
. w1 = Wk
ik (x) = my = v Z[ = k] = Py
(x,y)EN

We split the inner sum and further simplify the expression

CE(EL R E )

k=1 Y)EN: y=k X,y)EN: y#k

g nwv 2 v 2
k K

= > vk (1 ) + (v — N k) ( ) ;
P ny ny

since for nxs x observations the condition y = k is met, and for the remaining
(nn — nar«) observations it is not.
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BRIER SCORE MINIMIZATION = GINI SPLITTING /3

We further simplify the expression to

2 2
n
<7N”k) +(nN_nN,k) ( NW)
nn nn

NNk NN — NNk

RN) =

S

(nnv — Na ok + N k)

g
= nNZTF,((N) . (1 — 7I',((N)) = nyImp(N).
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