Introduction to Machine Learning

Advanced Risk Minimization

Risk Minimizers
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Learning goals

Bayes optimal model (also: risk
minimizer, population minimizer)

Bayes risk

Bayes regret, estimation and
approximation error

Optimal constant model
Consistent learners



EMPIRICAL RISK MINIMIZATION

Very often, in ML, we minimize the empirical risk

Remol) = 3 L (y0. 1 (x))

i=1

@ each observation (x(), y{)) € X x ), so from feature and target space

@ fy : X — RY, fis a model from hypothesis space #; maps a feature
vector to output score; sometimes or often we omit H in the index

@ L: (Y xR9) — Risloss;
L (y, f) measures distance between label and prediction

ii.d.

@ We assume that (x, y) ~ Py, and (x(")7y(")) <Py

P,y is the distribution of the data generating process (DGP)

Let’s define (and minimize) loss in expectation, the theoretical risk:

R(f) = By [L(y, (x))] = / L(y, f(x)) dPyy
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TWO SHORT EXAMPLES

Regression with linear model:
@ Model: f(x) = 8Tx + 6,

@ Squared loss: L(y,f) = (y — f)® X

@ Hypothesis space:

”Hun:{XHGTx—l—HO:OERO’,QOER}

Binary classification with shallow MLP:
@ Model: f(x) = m(x) = o(w, ReLU(W1x + by) + bo)
@ Binary cross-entropy loss:
L(y,m) = —(ylog(m) + (1 — y) log(1 — 7))
@ Hypothesis space:

Hup = {x — o(w; ReLU(W:x + by) + b) : Wy € R"™9 by € R" w, € R", b, € R}
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OPTIMAL CONSTANTS FOR A LOSS

@ Let’'s assume some RV z € Y for a label
@ z not RV y, because we want to fiddle with its distribution
@ Assume z has distribution Q, so z ~ Q

@ We can now consider arg min, E,..q[L(Z, ¢)]
so the score-constant which loss-minimally approximates z

We will consider 3 cases for Q
@ Q= Py, simply our labels and their marginal distribution in Py,
e Q= Py|x=x, conditional label distribution at point x = X
@ Q = P,, the empirical product distribution for data yy, ..., yn

If we can solve arg min_ E,q[L(z, ¢)] for any Q, we will get multiple
useful results!
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OPTIMAL CONSTANT MODEL

@ We would like a loss optimal, constant baseline predictor
@ A "featureless" ML model, which always predicts the same value

@ Can use it as baseline in experiments, if we don'’t beat this with more complex
model, that model is useless

@ Will also be useful as component in algorithms and derivations
fy = argminE,, [L(y,c)] = argminE, [L(y, c)]
ceR ceR

and f(x) = 6 = c that optimizes the empirical risk Remp(0) is denoted as as
f, = arg min g Remp(8).
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OPTIMAL CONSTANT MODEL

Let’s start with the simplest case, L2 loss

And we want to find and optimal constant model for

argmin E[L(z,¢c)] =
argminE[(z — ¢)?] =
argmin B[Z%] — 2¢E[z] + ¢® =
E[z]

Using Q = Py, this means that, given we know the label
distribution, the best constant is ¢ = E[y].

If we only have data y1, ... yn
n

argmin E,.p, (2 — 0)%) = Eop,fz] = £ 32 40 =

i=1
And we want to find and optimal constant model for
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RISK MINIMIZER

Let us assume we are in an “ideal world”:

@ The hypothesis space H = Hgy is unrestricted. We can choose
any measurable f : X — RY.

@ We also assume an ideal optimizer; the risk minimization can
always be solved perfectly and efficiently.

@ We know Py,.
How should f be chosen?
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RISK MINIMIZER /2

The f with minimal risk across all (measurable) functions is called the
risk minimizer, population minimizer or Bayes optimal model.

f;f[a” = argmin R (f) = argminE,, [L(y, f(x))]
fEH fEHa
= argmin/L(y, f(x)) dPyy.
feHan

The resulting risk is called Bayes risk: R* = R(f}, )

Note that if we leave out the hypothesis space in the subscript it
becomes clear from the context!
Similarly, we define the risk minimizer over some H C Hy as

fy, = argminR(f)
feH
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OPTIMAL POINT-WISE PREDICTIONS

To derive the risk minimizer, observe that by law of total expectation
R(f) = Exy [L(y, f(x))] = Ex [Eyx [L(y, f(x)) [ x]] .
@ We can choose f(x) as we want (unrestricted hypothesis space,
no assumed functional form)

@ Hence, for a fixed value x € X we can select any value ¢ we want
to predict. So we construct the point-wise optimizer

f*(x) = argmin I, |, [L(y, c) | x = X]

L2 Loss: Fix one x L1 Loss: Fix one x
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THEORETICAL AND EMPIRICAL RISK

The risk minimizer is mainly a theoretical tool:
@ In practice we need to restrict the hypothesis space H such that
we can efficiently search over it.
@ In practice we (usually) do not know Py, . Instead of R(f), we are
optimizing the empirical risk

n
?H = arfgegin Remp(f) = arfgegin ; L <y(i), f (x(i)))

Note that according to the law of large numbers (LLN), the empirical
risk converges to the true risk (but beware of overfitting!):

n

Remp(F) = % S (Y0 (x0)) 3 ().

i=1
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ESTIMATION AND APPROXIMATION ERROR

Goal of learning: Train a model ?7.[ for which the true risk R (?H) is
close to the Bayes risk R*. In other words, we want the Bayes regret
or excess risk

R (7‘%) ~R*
to be as low as possible.

The Bayes regret can be decomposed as follows:

R <fH) R = [R (fH> — inf R(f)] + [fngyf{?%(f) R ]
estimation error approximation error

= [R(h) = R(F)| + [R() - RUF,)]
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ESTIMATION AND APPROXIMATION ERROR /2

K
Estimation pproximation
.f/ ':\__ Error \\ J\un l
(Re(f) ™ o
‘.\ . / RL
infreyy R
\\h feH L (fy
~__ -
— f: X

» RY

o R (?) — infrey R(f) is the estimation error. We fit f via empirical
risk minimization and (usually) use approximate optimization, so
we usually do not find the optimal f € H.

@ infreyy R(f) — R* is the approximation error. We need to restrict
to a hypothesis space H which might not even contain the Bayes

optimal model f*.
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(UNIVERSALLY) CONSISTENT LEARNERS

Consistency is an asymptotic property of a learning algorithm, which
ensures the algorithm returns the correct model when given
unlimited data.

Let Z : D — H be alearning algorithm that takes a training set
Dirain ~ Pyy of size nyain and estimates a model f : X — RY.

The learning method 7 is said to be consistent w.r.t. a certain
distribution Py, if the risk of the estimated model f converges in

probability ( “LY’) to the Bayes risk R* when ny,in goes to oo:

R (I (Dtrain)) 2 R*  for Nyain — o0.
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(UNIVERSALLY) CONSISTENT LEARNERS /2

Consistency is defined w.r.t. a particular distribution P,. But since we
usually do not know PP, consistency does not offer much help to
choose an algorithm for a particular task.

More interesting is the stronger concept of universal consistency: An
algorithm is universally consistent if it is consistent for any distribution.

In Stone’s famous consistency theorem from 1977, the universal
consistency of a weighted average estimator as KNN was proven.
Many other ML models have since then been proven to be universally
consistent (SVMs, ANNSs, etc.).

Note that universal consistency is obviously a desirable property -
however, (universal) consistency does not tell us anything about
convergence rates ...
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