
Introduction to Machine Learning

Advanced Risk Minimization
Risk Minimizers

Learning goals
Bayes optimal model (also: risk
minimizer, population minimizer)

Bayes risk

Bayes regret, estimation and
approximation error

Optimal constant model

Consistent learners



EMPIRICAL RISK MINIMIZATION

Very often, in ML, we minimize the empirical risk

Remp(f ) =
n∑

i=1

L
(

y (i), f
(

x(i)
))

each observation
(
x(i), y (i)

)
∈ X × Y , so from feature and target space

fH : X → Rg , f is a model from hypothesis space H; maps a feature
vector to output score; sometimes or often we omit H in the index

L : (Y × Rg) → R is loss;
L (y , f ) measures distance between label and prediction

We assume that (x, y) ∼ Pxy and
(
x(i), y (i)

) i.i.d.∼ Pxy

Pxy is the distribution of the data generating process (DGP)

Let’s define (and minimize) loss in expectation, the theoretical risk:

R (f ) := Exy [L (y , f (x))] =
∫

L (y , f (x)) dPxy
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TWO SHORT EXAMPLES

Regression with linear model:

Model: f (x) = θ⊤x + θ0

Squared loss: L (y , f ) = (y − f )2

Hypothesis space:

Hlin =
{

x 7→ θ⊤x + θ0 : θ ∈ Rd , θ0 ∈ R
}

Binary classification with shallow MLP:

Model: f (x) = π(x) = σ(w⊤
2 ReLU(W 1x + b1) + b2)

Binary cross-entropy loss:
L (y ,π) = −(y log(π) + (1 − y) log(1 − π))

Hypothesis space:

HMLP =
{

x 7→ σ(w⊤
2 ReLU(W 1x + b1) + b2) : W1 ∈ Rh×d ,b1 ∈ Rh,w2 ∈ Rh, b2 ∈ R

}
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OPTIMAL CONSTANTS FOR A LOSS

Let’s assume some RV z ∈ Y for a label

z not RV y , because we want to fiddle with its distribution

Assume z has distribution Q, so z ∼ Q

We can now consider argminc Ez∼Q[L(z, c)]
so the score-constant which loss-minimally approximates z

We will consider 3 cases for Q

Q = Py , simply our labels and their marginal distribution in Pxy

Q = Py |x=x , conditional label distribution at point x = x̃

Q = Pn, the empirical product distribution for data y1, . . . , yn

If we can solve argminc Ez∼Q[L(z, c)] for any Q, we will get multiple
useful results!
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OPTIMAL CONSTANT MODEL

We would like a loss optimal, constant baseline predictor
A "featureless" ML model, which always predicts the same value
Can use it as baseline in experiments, if we don’t beat this with more complex
model, that model is useless

Will also be useful as component in algorithms and derivations

f ∗c = argmin
c∈R

Exy [L(y , c)] = argmin
c∈R

Ey [L(y , c)]

and f (x) = θ = c that optimizes the empirical risk Remp(θ) is denoted as as

f̂c = argminc∈R Remp(θ).
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OPTIMAL CONSTANT MODEL

Let’s start with the simplest case, L2 loss

And we want to find and optimal constant model for

argminE[L(z, c)] =

argminE[(z − c)2] =

argminE[z2]− 2cE [z] + c2 =

E [z]

Using Q = Py , this means that, given we know the label
distribution, the best constant is c = E [y ].

If we only have data y1, . . . yn

argminEz∼Pn [(z − c)2] = Ez∼Pn [z] =
1
n

n∑
i=1

y (i) = ȳ

And we want to find and optimal constant model for
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RISK MINIMIZER

Let us assume we are in an “ideal world”:

The hypothesis space H = Hall is unrestricted. We can choose
any measurable f : X → Rg .

We also assume an ideal optimizer; the risk minimization can
always be solved perfectly and efficiently.

We know Pxy .

How should f be chosen?
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RISK MINIMIZER / 2

The f with minimal risk across all (measurable) functions is called the
risk minimizer, population minimizer or Bayes optimal model.

f ∗Hall
= argmin

f∈Hall

R (f ) = argmin
f∈Hall

Exy [L (y , f (x))]

= argmin
f∈Hall

∫
L (y , f (x)) dPxy .

The resulting risk is called Bayes risk: R∗ = R(f ∗Hall
)

Note that if we leave out the hypothesis space in the subscript it
becomes clear from the context!
Similarly, we define the risk minimizer over some H ⊂ Hall as

f ∗H = argmin
f∈H

R (f )
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OPTIMAL POINT-WISE PREDICTIONS

To derive the risk minimizer, observe that by law of total expectation

R(f ) = Exy [L (y , f (x))] = Ex
[
Ey |x [L (y , f (x)) | x]

]
.

We can choose f (x) as we want (unrestricted hypothesis space,
no assumed functional form)
Hence, for a fixed value x ∈ X we can select any value c we want
to predict. So we construct the point-wise optimizer

f ∗(x̃) = argmincEy |x [L(y , c) | x = x̃]

© Introduction to Machine Learning – 8 / 13



THEORETICAL AND EMPIRICAL RISK

The risk minimizer is mainly a theoretical tool:

In practice we need to restrict the hypothesis space H such that
we can efficiently search over it.

In practice we (usually) do not know Pxy . Instead of R(f ), we are
optimizing the empirical risk

f̂H = argmin
f∈H

Remp(f ) = argmin
f∈H

n∑
i=1

L
(

y (i), f
(

x(i)
))

Note that according to the law of large numbers (LLN), the empirical
risk converges to the true risk (but beware of overfitting!):

R̄emp(f ) =
1
n

n∑
i=1

L
(

y (i), f
(

x(i)
))

n→∞−→ R(f ).
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ESTIMATION AND APPROXIMATION ERROR

Goal of learning: Train a model f̂H for which the true risk R
(

f̂H
)

is

close to the Bayes risk R∗. In other words, we want the Bayes regret
or excess risk

R
(

f̂H
)
−R∗

to be as low as possible.

The Bayes regret can be decomposed as follows:

R
(

f̂H
)
−R∗ =

[
R

(
f̂H
)
− inf

f∈H
R(f )

]
︸ ︷︷ ︸

estimation error

+

[
inf
f∈H

R(f )−R∗
]

︸ ︷︷ ︸
approximation error

=
[
R(̂fH)−R(f ∗H)

]
+
[
R(f ∗H)−R(f ∗Hall

)
]
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ESTIMATION AND APPROXIMATION ERROR / 2

R
(

f̂
)
− inf f∈HR(f ) is the estimation error. We fit f̂ via empirical

risk minimization and (usually) use approximate optimization, so
we usually do not find the optimal f ∈ H.

inf f∈HR(f )−R∗ is the approximation error. We need to restrict
to a hypothesis space H which might not even contain the Bayes
optimal model f ∗.
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(UNIVERSALLY) CONSISTENT LEARNERS

Consistency is an asymptotic property of a learning algorithm, which
ensures the algorithm returns the correct model when given
unlimited data.

Let I : D → H be a learning algorithm that takes a training set
Dtrain ∼ Pxy of size ntrain and estimates a model f̂ : X → Rg .

The learning method I is said to be consistent w.r.t. a certain
distribution Pxy if the risk of the estimated model f̂ converges in

probability ( “
p−→”) to the Bayes risk R∗ when ntrain goes to ∞:

R (I (Dtrain))
p−→ R∗ for ntrain → ∞.
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(UNIVERSALLY) CONSISTENT LEARNERS / 2

Consistency is defined w.r.t. a particular distribution Pxy . But since we
usually do not know Pxy , consistency does not offer much help to
choose an algorithm for a particular task.

More interesting is the stronger concept of universal consistency: An
algorithm is universally consistent if it is consistent for any distribution.

In Stone’s famous consistency theorem from 1977, the universal
consistency of a weighted average estimator as KNN was proven.
Many other ML models have since then been proven to be universally
consistent (SVMs, ANNs, etc.).

Note that universal consistency is obviously a desirable property -
however, (universal) consistency does not tell us anything about
convergence rates ...
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