Introduction to Machine Learning

Advanced Risk Minimization
Regression Losses: L2 and L1 loss

Learning goals
@ Derive the risk minimizer of the
L2-loss
@ Derive the optimal constant model for
the L2-loss

@ Know risk minimizer and optimal
constant model for L1-loss
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L2-LOSS

Liy.N=(—1* or L(y.f)=05(y 1>
@ Tries to reduce large residuals (if residual is twice as large, loss is
4 times as large), hence outliers in y can become problematic

@ Analytic properties: convex, differentiable = gradient no problem
in loss minimization

(Warning: Remp(f) can still be non-smooth/non-convex due to f(x))
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L2-LOSS: OPTIMAL CONSTANT MODEL

Let us consider the (true) risk for Y = R and L2-Loss
L(y,f) = (y — f)? with H restricted to constants. The optimal constant
model £} in terms of the theoretical risk is the expected value over y:

fr = argeﬁin Ey [(y — ¢)?] = ari%in E, [(y — ¢)?]
= argminEy [(y —of*] ~ (B[] — 0" + (Byly] — o

=Var,[y—c]=Var,[y]

= argminVar,[y] + (E,[y] - ¢)?
ceR

= Ey[y]
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L2-LOSS: OPTIMAL CONSTANT MODEL /2

The optimizer f, of the empirical risk is y (the empirical mean over y(’)),

which is the empirical estimate for IE, [y].
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L2-LOSS: OPTIMAL CONSTANT MODEL /3

Proof:

For the optimal constant model £ for the L2-loss L (y, f) = (y — f)* we
solve the optimization problem

n
arg min Remp(f) = arg min Z(y(i) _ 9)2
feH beR

We calculate the first derivative of Remp W.r.t. 6 and set it to O:

M__ZZQ/(I ) = 0
Zy(’)—ne =0

i=1
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L2-LOSS: RISK MINIMIZER

Let us consider the (true) risk for Y = R and the L2-Loss
L(y,f) = (y — f)* with unrestricted H = {f : X — RY}.
@ By the law of total expectation

Ri(f) = By [L(y, f(X))] = Ex [Eyx [L(y, f(x)) | x = X]]
= Ex [E, [(y — f(x))? [x =x]].

@ Since H is unrestricted, at any point x = x, we can predict any
value ¢ we want. The best point-wise prediction is the cond. mean

F*(x) = arg min (v =) [ x=x] 2B, [y x].

) follows from the drivation of £
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L2 LOSS MEANS MINIMIZING VARIANCE

Rethinking what we did in the opt. constant model: We optimized for a
constant whose squared distance to all data points is minimal (in sum,
or on average). This turned out to be the mean.

~ n .
What if we calculcate the loss of @ = y? That's Remp = > (y\) — 7)2.
i=1
Average this by 1 or —L- to obtain variance.

Optimal constant model gives "unscaled" variance

@ Generally, if model yields
unbiased predictions,
E, | x [y —f(x) | x] =0, using
L2-loss means minimizing
variance of model residuals

@ Same holds for the pointwise
construction / conditional
distribution considered before
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L1-LOSS
The L1 loss is defined as x

@ More robust than L2, outliers in y are less problematic.
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@ Analytical properties: convex, not differentiable for y = f(x)
(optimization becomes harder).
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L1-LOSS: RISK MINIMIZER

We calculate the (true) risk for the L1-Loss L(y, f) = |y — f| with
unrestricted H = {f : X — V}.

@ We use the law of total expectation

R(f) = Ex [Eyx [ly — f(x)] [x = x]] -

@ As the functional form of f is not restricted, we can just optimize
point-wise at any point x = x. The best prediction at x = x is then

f*(x) = argcmin Eyx [ly —cll= medy|x [y [ x].
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L1-LOSS: OPTIMAL CONSTANT MODEL

The optimal constant model in terms of the theoretical risk for the L1
loss is the median over y:

fo = medy[y]X] - med, [y]
The optimizer #, of the empirical risk is med(y()) over y()), which is the
empirical estimate for med, [y].
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