
Introduction to Machine Learning

Advanced Risk Minimization
Regression Losses: L2 and L1 loss

Learning goals
Derive the risk minimizer of the
L2-loss

Derive the optimal constant model for
the L2-loss

Know risk minimizer and optimal
constant model for L1-loss



L2-LOSS

L (y , f ) = (y − f )2 or L (y , f ) = 0.5 (y − f )2

Tries to reduce large residuals (if residual is twice as large, loss is
4 times as large), hence outliers in y can become problematic

Analytic properties: convex, differentiable ⇒ gradient no problem
in loss minimization
(Warning: Remp(f ) can still be non-smooth/non-convex due to f (x))
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L2-LOSS: OPTIMAL CONSTANT MODEL

Let us consider the (true) risk for Y = R and L2-Loss
L (y , f ) = (y − f )2 with H restricted to constants. The optimal constant
model f ∗c in terms of the theoretical risk is the expected value over y :

f ∗c = argmin
c∈R

Exy
[
(y − c)2] = argmin

c∈R
Ey

[
(y − c)2]

= argmin
c∈R

Ey
[
(y − c)2]− (Ey [y ]− c)2︸ ︷︷ ︸

=Vary [y−c]=Vary [y]

+(Ey [y ]− c)2

= argmin
c∈R

Vary [y ] + (Ey [y ]− c)2

= Ey [y ]
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L2-LOSS: OPTIMAL CONSTANT MODEL / 2

The optimizer f̂c of the empirical risk is ȳ (the empirical mean over y (i)),
which is the empirical estimate for Ey [y ].

© Introduction to Machine Learning – 3 / 9



L2-LOSS: OPTIMAL CONSTANT MODEL / 3

Proof:

For the optimal constant model f ∗c for the L2-loss L (y , f ) = (y − f )2 we
solve the optimization problem

argmin
f∈H

Remp(f ) = argmin
θ∈R

n∑
i=1

(y (i) − θ)2.

We calculate the first derivative of Remp w.r.t. θ and set it to 0:

∂Remp(θ)

∂θ
= −2

n∑
i=1

(
y (i) − θ

)
!
= 0

n∑
i=1

y (i) − nθ = 0

θ̂ =
1
n

n∑
i=1

y (i) =: ȳ .
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L2-LOSS: RISK MINIMIZER

Let us consider the (true) risk for Y = R and the L2-Loss
L (y , f ) = (y − f )2 with unrestricted H = {f : X → Rg}.

By the law of total expectation

RL(f ) = Exy [L (y , f (x))] = Ex
[
Ey |x [L (y , f (x)) | x = x]

]
= Ex

[
Ey |x

[
(y − f (x))2 |x = x

]]
.

Since H is unrestricted, at any point x = x, we can predict any
value c we want. The best point-wise prediction is the cond. mean

f ∗(x) = argmin
c

Ey |x
[
(y − c)2 | x = x

] (∗)
= Ey |x [y | x] .

(∗) follows from the drivation of f∗c
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L2 LOSS MEANS MINIMIZING VARIANCE

Rethinking what we did in the opt. constant model: We optimized for a
constant whose squared distance to all data points is minimal (in sum,
or on average). This turned out to be the mean.

What if we calculcate the loss of θ̂ = ȳ? That’s Remp =
n∑

i=1
(y (i) − ȳ)2.

Average this by 1
n or 1

n−1 to obtain variance.

Generally, if model yields
unbiased predictions,
Ey | x [y − f (x) | x] = 0, using
L2-loss means minimizing
variance of model residuals

Same holds for the pointwise
construction / conditional
distribution considered before
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L1-LOSS
The L1 loss is defined as

L (y , f ) = |y − f |

More robust than L2, outliers in y are less problematic.

Analytical properties: convex, not differentiable for y = f (x)
(optimization becomes harder).
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L1-LOSS: RISK MINIMIZER

We calculate the (true) risk for the L1-Loss L (y , f ) = |y − f | with
unrestricted H = {f : X → Y}.

We use the law of total expectation

R(f ) = Ex
[
Ey |x [|y − f (x)| |x = x]

]
.

As the functional form of f is not restricted, we can just optimize
point-wise at any point x = x. The best prediction at x = x is then

f ∗(x) = argmin
c

Ey |x [|y − c|] = medy |x [y | x] .
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L1-LOSS: OPTIMAL CONSTANT MODEL

The optimal constant model in terms of the theoretical risk for the L1
loss is the median over y :

f ∗c = medy |x [y | x]
drop x
= medy [y ]

The optimizer f̂c of the empirical risk is med(y (i)) over y (i), which is the
empirical estimate for medy [y ].
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