
Introduction to Machine Learning

Advanced Risk Minimization
Advanced Regression Losses

Learning goals
Know the Huber loss

Know the log-cosh loss

Know the Cauchy loss

Know the log-barrier loss

Know the ϵ-insensitive loss

Know the quantile loss



ADVANCED LOSS FUNCTIONS

Special loss functions can be used to estimate non-standard posterior
components, to measure errors customarily or which are designed to
have special properties like robustness.

Examples:

Quantile loss: Overestimating a clinical parameter might not be as
bad as underestimating it.

Log-barrier loss: Extremely under- or overestimating demand in
production would put company profit at risk.

ϵ-insensitive loss: A certain amount of deviation in production does
no harm, larger deviations do.

© Introduction to Machine Learning – 1 / 11



HUBER LOSS

L (y , f ) =

{
1
2(y − f )2 if |y − f | ≤ ϵ

ϵ|y − f | − 1
2ϵ

2 otherwise
, ϵ > 0

Piece-wise combination of L1/L2 to have robustness/smoothness

Analytic properties: convex, differentiable (once)

Risk minimizer and optimal constant do not have a closed-form
solution. To fit a model numerical optimization is necessary.

Solution behaves like trimmed mean: a (conditional) mean of two
(conditional) quantiles.
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LOG-COSH LOSS R. A. Saleh and A. Saleh 2022

L (y , f ) = log (cosh(|y − f |)) where cosh(x) :=
ex + e−x

2

Logarithm of the hyperbolic cosine of the residual.

Approximately equal to 0.5(|y − f |)2 for small residuals and to
|y − f | − log 2 for large residuals, meaning it works a smoothed
out L1 loss using L2 around the origin.

Has all the advantages of Huber loss and is, moreover, twice
differentiable everywhere.
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LOG-COSH LOSS R. A. Saleh and A. Saleh 2022 / 2

What is the idea behind the log-cosh loss?
Essentially, we

1 take derivative of L1 loss
w.r.t. y − f , which is the
sign(y − f ) function

2 eliminate discontinuity at 0 by
approximating sign(y − f ) using
the cont. differentiable
tanh(y − f )

3 finally integrate the smoothed
sign function “up again” to
obtain smoothed L1 loss
log(cosh(y − f )) =
log(cosh(|y − f |))

The log-cosh approach to obtain a differentiable approximation of the
L1 loss can also be extended to differentiable quantile/pinball losses.
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https://arxiv.org/pdf/2208.04564


LOG-COSH LOSS R. A. Saleh and A. Saleh 2022 / 3

The cosh(θ, σ) distribution:
The (normalized) reciprocal cosh(x) defines a pdf by its positivity on R
and since

∫∞
−∞

1
πcosh(x)dx = 1.

We can define a location-scale family of distributions (using θ and σ)
resembling Gaussians with heavier tails.
It is easy to check that ERM using the log-cosh loss is equivalent to
MLE of the cosh(θ, 1) distribution.

p(x |θ, σ) = 1
πσ cosh( x−θ

σ )

EX∼p[X ] = θ

VarX∼p[X ] = 1
4(π

2σ2)

θ̂MLE = argmaxθ
∏n

i=1
1

π cosh(xi−θ)
≡

θ̂ = argminθ
n∑

i=1
log(cosh(xi − θ))
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CAUCHY LOSS

L (y , f ) =
c2

2
log

(
1 +

(
|y − f |

c

)2
)
, c ∈ R

Particularly robust toward outliers (controllable via c).

Analytic properties: differentiable, but not convex!

© Introduction to Machine Learning – 6 / 11



TELEPHONE DATA

We now illustrate the effect of using robust loss functions. The telephone data
set contains the number of calls (in 10mio units) made in Belgium between
1950 and 1973 (n = 24). Outliers are due to a change in measurement
without re-calibration for 6 years.
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LOG-BARRIER LOSS

L (y , f ) =

{
−ϵ2 · log

(
1 −

(
|y−f |

ϵ

)2)
if |y − f | ≤ ϵ

∞ if |y − f | > ϵ

Behaves like L2 loss for small residuals

We use this if we don’t want residuals larger than ϵ at all

No guarantee that the risk minimization problem has a solution

Plot shows log-barrier loss for ϵ = 2:
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ϵ-INSENSITIVE LOSS

L (y , f ) =

{
0 if |y − f | ≤ ϵ

|y − f | − ϵ otherwise
, ϵ ∈ R+

Modification of L1 loss, errors below ϵ accepted without penalty

Used in SVM regression

Properties: convex and not differentiable for y − f ∈ {−ϵ, ϵ}
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QUANTILE LOSS / PINBALL LOSS

L (y , f ) =

{
(1 − α)(f − y) if y < f

α(y − f ) if y ≥ f
, α ∈ (0, 1)

Extension of L1 loss (equal to L1 for α = 0.5).

Weighs either positive or negative residuals more strongly

α < 0.5 (α > 0.5) penalty to over-estimation (under-estimation)

Risk minimizer is (conditional) α-quantile (median for α = 0.5)
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QUANTILE LOSS / PINBALL LOSS / 2

We simulate n = 200 samples from a heteroskedastic LM using the
DGP y = 1 + 0.2x + ε, where ε ∼ N (0, 0.5 + 0.5x) and x ∼ U [0, 10].
Using the quantile loss, we estimate the conditional α-quantiles for
α ∈ {0.05, 0.5, 0.95}.
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