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PROBABILISTIC FORECASTS Gneiting and Raftery 2007

Scoring rules S(P, y) assess the quality of probabilistic forecasts by
assigning a score based on the predictive distribution P and the
realized event y . The expected score w.r.t. the RV y ∼ Q is denoted as

S(P,Q) = Ey∼Q[S(P, y)]

A scoring rule is proper if the forecaster maximizes the expected score
for an observation drawn from Q if he or she issues the forecast Q
rather than P ̸= Q:

S(Q,Q) ≥ S(P,Q) for all P,Q

S is strictly proper when equality holds iff P = Q. (Strictly) proper
scores ensure the forecaster has an incentive to predict Q and is
encouraged to report his or her true belief.

NB: scores are typically positively oriented (maximization) while losses are negatively

oriented (minimization). Scores could also be defined negatively oriented.
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BINARY CLASSIFICATION SCORES

For simplicity, we will only look at binary targets y ∼ Bern(p).
We want to find out if using a loss L(y , π) (negative score) incentivizes
honest forecasts π = p for any p ∈ [0, 1].

For any loss L, its expectation w.r.t. y is

Ey [L(y , π)] = p · L(1, π) + (1 − p) · L(0, π)

Let’s first look at a negative example. Assuming the L1 loss
L(y , π) = |y − π|, we obtain

Ey [L(y , π)] = p|1 − π|+ (1 − p)π = p + π(1 − 2p)

The expected loss is linear in π, hence we minimize it by setting π = 1
for p > 0.5 and π = 0 for p < 0.5.

The score S(π, y) = −L(y , π) is therefore not proper.
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BINARY CLASSIFICATION SCORES

The 0/1 loss L(y , π) = 1{y ̸=hπ} using the discrete classifier
hπ = 1{π>0.5} yields in expectation over y :

Ey [L(y , π)] = p · L(1, π) + (1 − p) · L(0, π)

=

{
p if hπ = 0
1 − p if hπ = 1

For p > 0.5 we minimize the expected loss by choosing hπ = 1,
which holds true for any π ∈ (0.5, 1)

Likewise for p ≤ 0.5, any π ∈ (0, 0.5] minimizes the expected loss

The 0/1 score (negative 0/1 loss) is therefore proper but not strictly
proper since there is no unique maximum.
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BINARY CLASSIFICATION SCORES

To find strictly proper scores/losses, we can ask: Which functions have
the property such that Ey [L(y , π)] is minimized at π = p? We have

Ey [L(y , π)] = p · L(1, π) + (1 − p) · L(0, π)

Let’s further assume that L(1, π) and L(0, π) can not be arbitrary, but
are the same function evaluated at π and 1 − π: L(1, π) = L(π) and
L(0, π) = L(1 − π). Then

Ey [L(y , π)] = p · L(π) + (1 − p) · L(1 − π)

Setting the derivative w.r.t. π to 0 and requiring π = p at the optimum
(propriety), we get the following first-order condition (F.O.C.):

p · L′(p)
!
= (1 − p) · L′(1 − p)
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BINARY CLASSIFICATION SCORES / 2

F.O.C.: p · L′(p)
!
= (1 − p) · L′(1 − p)

One natural solution is L′(p) = −1/p, resulting in
−p/p = −(1 − p)/(1 − p) = −1 and the antiderivative
L(p) = − log(p).

This is the log loss

L(y , π) = −(y · log(π) + (1 − y) · log(1 − π))

The corresponding scoring rule (maximization) is the strictly
proper logarithmic scoring rule

S(π, y) = y · log(π) + (1 − y) · log(1 − π)
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BINARY CLASSIFICATION SCORES / 3

F.O.C.: p · L′(p)
!
= (1 − p) · L′(1 − p)

A second solution is L′(p) = −2(1 − p), resulting in
−2p(1 − p) = −2(1 − p)p and the antiderivative
L(p) = (1 − p)2 = 1

2((1 − p)2 + (0 − (1 − p))2)

This is also called the Brier score and is effectively the MSE loss
for probabilities

L(y , π) =
1
2

2∑
i=1

(yi − πi)
2

(with y1 = y , y2 = 1 − y and likewise π1 = π, π2 = 1 − π)

Using positive orientation (maximization), this gives rise to the
quadratic scoring rule, which for two classes is
S(π, y) = −1

2

∑2
i=1(yi − πi)

2
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