Introduction to Machine Learning

Advanced Risk Minimization
Proper Scoring Rules
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PROBABILISTIC FORECASTS

Scoring rules S(P, y) assess the quality of probabilistic forecasts by
assigning a score based on the predictive distribution P and the
realized event y. The expected score w.r.t. the RV y ~ Q is denoted as

S(P, Q) = Ey~a[S(P, y)]

A scoring rule is proper if the forecaster maximizes the expected score
for an observation drawn from Q if he or she issues the forecast Q
rather than P # Q:

S(Q,Q) > S(P,Q) forallP,Q

S is strictly proper when equality holds iff P = Q. (Strictly) proper
scores ensure the forecaster has an incentive to predict Q and is
encouraged to report his or her true belief.

NB: scores are typically positively oriented (maximization) while losses are negatively
oriented (minimization). Scores could also be defined negatively oriented.
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https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf

BINARY CLASSIFICATION SCORES

For simplicity, we will only look at binary targets y ~ Bern(p).
We want to find out if using a loss L(y, 7) (negative score) incentivizes
honest forecasts = = p for any p € [0, 1].

For any loss L, its expectation w.r.t. y is
Ey[L(y,m)]=p-L(1,7)+ (1 —p) - L(O,)

Let’s first look at a negative example. Assuming the L1 loss
L(y,m) = |y — |, we obtain
Ey[L(y, )] =pt — 7|+ (1 —p)m =p+7(1 —2p)

The expected loss is linear in 7, hence we minimize it by setting m = 1
forp > 0.5and w =0 for p < 0.5.

The score S(m, y) = —L(y, ) is therefore not proper.
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BINARY CLASSIFICATION SCORES

The 0/1loss L(y,n) = 1,4} using the discrete classifier
hz = 1{z~0.5) yields in expectation over y:

Ey[Ly,m)] = p-L(1,7)+(1—p)-L(0,m)
- p if hy =0
N { 1—p ifh, =1

@ For p > 0.5 we minimize the expected loss by choosing h; = 1,
which holds true for any = € (0.5, 1)

@ Likewise for p < 0.5, any 7w € (0, 0.5] minimizes the expected loss

The 0/1 score (negative 0/1 loss) is therefore proper but not strictly
proper since there is no unique maximum.
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BINARY CLASSIFICATION SCORES

To find strictly proper scores/losses, we can ask: Which functions have
the property such that IE, [L(y, )] is minimized at 7 = p? We have

B, [L(y, m)] = p- L(1,7) + (1 — p) - L(0, )

Let’s further assume that L(1,7) and L(0, 7) can not be arbitrary, but
are the same function evaluated at 7 and 1 — 7: L(1,7) = L(7) and
L(0,7) = L(1 — 7). Then

Ey[L(y,m)] =p-L(m)+ (1 —p) L1 —7)

Setting the derivative w.r.t. 7 to 0 and requiring m = p at the optimum
(propriety), we get the following first-order condition (F.O.C.):

p-L'(p)=(1-p)-L'(1-p)
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BINARY CLASSIFICATION SCORES /2

@ FOC.: p-L(p)=(1-p)-L'(1—-p)

@ One natural solution is L'(p) = —1/p, resulting in
—p/p=—(1—p)/(1 — p) = —1 and the antiderivative
L(p) = — log(p).

@ This is the log loss
L(y,m) = —(y - log(m) + (1 — y) - log(1 — m))

@ The corresponding scoring rule (maximization) is the strictly
proper logarithmic scoring rule

S(m,y) =y -log(m) + (1 —y) - log(1 — )
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BINARY CLASSIFICATION SCORES /3
@ FO.C. p-L'(p)=(1—p)-L'(1—p)

@ A second solution is L'(p) = —2(1 — p), resulting in
—2p(1 —p) = —2(1 — p)p and the antiderivative

L(p) = (1=p)?=3((1 =P+ (0— (1 - p))?)

@ This is also called the Brier score and is effectively the MSE loss

for probabilities
2

Lym) = 5 Sl -l

i=1

(with yy = y,¥o =1 — y and likewise my =, 1m0 =1 —7)

@ Using positive orientation (maximization), this gives rise to the
quadratic scoring rule, which for two classes is

S(m,y) = =5 2i (v — m)?
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