
Introduction to Machine Learning

Advanced Risk Minimization
Maximum Likelihood Estimation vs.
Empirical Risk Minimization

Learning goals
Correspondence between Laplace
errors and L1 loss

Correspondence between Bernoulli
targets and the Bernoulli / log loss



LAPLACE ERRORS - L1-LOSS

Let’s consider Laplacian errors ϵ now, with density:
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LaPlace Distribution with x ~ LP(0,1)

Then
y = ftrue(x) + ϵ

also follows Laplace distrib. with mean f
(
x(i) | θ

)
and scale σ.
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The likelihood is then
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)
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The negative log-likelihood is

−ℓ(θ) ∝
n∑

i=1

∣∣∣y (i) − f
(

x(i) | θ
)∣∣∣ .

MLE for Laplacian errors = ERM with L1-loss.
Some losses correspond to more complex or less known error
densities, like the Huber loss Meyer 2021

Huber density is (unsurprisingly) a hybrid of Gaussian and Laplace
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https://openaccess.thecvf.com/content/CVPR2021/papers/Meyer_An_Alternative_Probabilistic_Interpretation_of_the_Huber_Loss_CVPR_2021_paper.pdf
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We simulate data y | x ∼ Laplacian (ftrue(x), 1) with ftrue = 0.2 · x.

We can plot the empirical error distribution, i.e. the distribution of the residuals
after fitting a regression model w.r.t. L1-loss.

With the help of a Q-Q-plot we can compare the empirical residuals vs. the
theoretical quantiles of a Laplacian distribution.
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MAXIMUM LIKELIHOOD IN CLASSIFICATION

Let us assume the outputs y to be Bernoulli-distributed, i.e.

y | x ∼ Ber(πtrue(x)).

The negative log likelihood is

−ℓ(θ) = −
n∑

i=1

log p
(

y (i) | x(i),θ
)

= −
n∑
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log
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·
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MAXIMUM LIKELIHOOD IN CLASSIFICATION / 2

This gives rise to the following loss function

L(y , π(x)) = −y log(π(x))− (1 − y) log(1 − π(x)), y ∈ {0, 1}

which we introduced as Bernoulli loss.

© Introduction to Machine Learning – 5 / 6



MAXIMUM LIKELIHOOD IN CLASSIFICATION / 3

© Introduction to Machine Learning – 6 / 6


