Introduction to Machine Learning

Advanced Risk Minimization Maximum Likelihood Estimation vs. Empirical Risk Minimization

X X X

Learning goals

- **•** Understand the connection between maximum likelihood and risk minimization
- Learn the correspondence between a Gaussian error distribution and the L2 loss

MAXIMUM LIKELIHOOD

Let's consider regression from a maximum likelihood perspective. Assume:

$$
y \mid \mathbf{x} \sim p(y \mid \mathbf{x}, \theta)
$$

Common case: true underlying relationship f_{true} with additive noise:

where f_{true} has params θ and ϵ a RV that follows some distribution \mathbb{P}_{ϵ} , with $\mathbb{E}[\epsilon] = 0$. Also, assume $\epsilon \perp \mathbf{X}$.

MAXIMUM LIKELIHOOD / 2

From a statistics / maximum-likelihood perspective, we assume (or we pretend) we know the underlying distribution $p(y | x, \theta)$.

Then, given i.i.d data $\mathcal{D} = \left(\left(\mathbf{x}^{(1)}, y^{(1)}\right), \ldots,\left(\mathbf{x}^{(n)}, y^{(n)}\right)\right)$ from $\mathbb{P}_{\mathsf{x} \mathsf{y}}$ the maximum-likelihood principle is to maximize the **likelihood**

$$
\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} p\left(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
$$

$$
\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log p\left(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)
$$

 $-\ell$ (

MAXIMUM LIKELIHOOD / 3

From an ML perspective we assume our hypothesis space corresponds to the space of the (parameterized) f_{true} .

Simply define neg. log-likelihood as **loss function**

$$
L(y, f(\mathbf{x} \mid \boldsymbol{\theta})) := -\log p(y \mid \mathbf{x}, \boldsymbol{\theta})
$$

 \bullet Then, maximum-likelihood = ERM

$$
\mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} | \boldsymbol{\theta}\right)\right)
$$

- NB: When we are only interested in the minimizer, we can ignore multiplicative or additive constants.
- We use \propto as "proportional up to multiplicative and additive constants"

 \times \times

GAUSSIAN ERRORS - L2-LOSS

Assume $y = f_{true}(x) + \epsilon$ with additive Gaussian errors, i.e. $\epsilon^{(i)} \sim \mathcal{N}(0, \sigma^2).$ Then

$$
y \mid \mathbf{x} \sim N\left(f_{\text{true}}(\mathbf{x}), \sigma^2\right)
$$

X **XX**

The likelihood is then

$$
\mathcal{L}(\theta) = \prod_{i=1}^{n} p\left(y^{(i)} \middle| f\left(\mathbf{x}^{(i)} \middle| \theta\right), \sigma^2\right) \propto \prod_{i=1}^{n} \exp\left(-\frac{1}{2\sigma^2} \left(y^{(i)} - f\left(\mathbf{x}^{(i)} \middle| \theta\right)\right)^2\right)
$$

GAUSSIAN ERRORS - L2-LOSS / 2

Easy to see: minimizing neg. log-likelihood with Gaussian errors is the same as ERM with *L*2-loss:

$$
-\ell(\theta) = -\log (\mathcal{L}(\theta))
$$

$$
\propto -\log \left(\prod_{i=1}^{n} \exp \left(-\frac{1}{2\sigma^2} \left(y^{(i)} - f \left(\mathbf{x}^{(i)} | \theta \right) \right)^2 \right) \right)
$$

$$
\propto \sum_{i=1}^{n} \left(y^{(i)} - f \left(\mathbf{x}^{(i)} | \theta \right) \right)^2
$$

X $\times\overline{\times}$

GAUSSIAN ERRORS - L2-LOSS / 3

- \bullet We simulate data *y* | **x** ∼ N ($f_{true}(x)$, 1) with $f_{true} = 0.2 \cdot x$
- Let's plot empirical errors as histogram, after fitting our model with *L*2-loss
- Q-Q-plot compares empirical residuals vs. theoretical quantiles of Gaussian

DISTRIBUTIONS AND LOSSES

• For every error distribution \mathbb{P}_{ϵ} we can derive an equivalent loss function, which leads to the same point estimator for the parameter vector θ as maximum-likelihood. Formally,

$$
\bullet\ \hat{\theta}\in\mathop{\arg\max}_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta})\implies\hat{\theta}\in\mathop{\arg\min}_{\boldsymbol{\theta}}-\log(\mathcal{L}(\boldsymbol{\theta}))
$$

But: The other way around does not always work: We cannot derive a corresponding pdf or error distribution for every loss function – the Hinge loss is one prominent example, for which some probabilistic interpretation is still possible however, see ▶ [Sollich 1999](https://ieeexplore.ieee.org/abstract/document/819547)

DISTRIBUTIONS AND LOSSES / 2

When does the reverse direction hold?

- \bullet If we can write the loss as $L(y, f(x)) = L(y f(x)) = L(r)$ for *r* $\in \mathbb{R}$, then minimizing *L*(*y* − *f*(**x**)) is equivalent to maximizing a conditional log-likelihood $log(p(p - f(\mathbf{x}|\theta)))$ if
	- $log(p(r))$ is affine trafo of *L* (undoing the ∞):

 $log(p(r)) = a - bL(r), a \in \mathbb{R}, b > 0$

• *p* is a pdf (non-negative and integrates to one)

Thus, a loss *L* corresponds to MLE under *some* distribution if there exist $a \in \mathbb{R}$, $b > 0$ such that

$$
\int_{\mathbb{R}} \exp(a - bL(r)) \mathrm{d}r = 1
$$

