Introduction to Machine Learning

Advanced Risk Minimization
Maximum Likelihood Estimation vs.
Empirical Risk Minimization

Distribution of Residuals Learning goals

604

@ Understand the connection between
w0 maximum likelihood and risk
- minimization
2071 @ Learn the correspondence between a
Gaussian error distribution and the L2
loss

0.0
residuals
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MAXIMUM LIKELIHOOD

Let’s consider regression from a maximum likelihood perspective. X
Assume:

yIx~p(y|x0)

X X

Common case: true underlying relationship f;,e with additive noise:

ftrue(x) with Gaussian noise ~ N(0,1)
10-

y = ﬁ(rue(x) +e€

where fye has params @ and e a RV that follows some distribution P,
with E[¢] = 0. Also, assume ¢ _LL x.
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MAXIMUM LIKELIHOOD /2

From a statistics / maximum-likelihood perspective, we assume (or we
pretend) we know the underlying distribution p(y | x, 8).
@ Then, giveniiddata D = ((x(,y() ... (x(M, y(M)) from Py,
the maximume-likelihood principle is to maximize the likelihood

£(0) = ﬁp (y(i) | x), 9) A

i=1

or equivalently to minimize the negative log-likelihood

() = — Zn: log p (y(i) X0, 9) A

=1
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MAXIMUM LIKELIHOOD /3

From an ML perspective we assume our hypothesis space corresponds
to the space of the (parameterized) fyye.

@ Simply define neg. log-likelihood as loss function

L(y,f(x|8)) := —logp(y | x,0)

@ Then, maximum-likelihood = ERM

Remp(0) = Zn: L (y(i)’ f (x(i) | 9))

@ NB: When we are only interested in the minimizer, we can ignore
multiplicative or additive constants.

@ We use « as “proportional up to multiplicative and additive
constants”
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GAUSSIAN ERRORS - L2-LOSS

Assume ¥y = frue(X) + € with additive Gaussian errors, i.e.
el) ~ N(0,02). Then

y|x~N (ftrue(x)aaz)
The likelihood is then

o) = ﬁp(yw f<x(’)\0>,a2)
N gp <_2;2 (y0 1 (x| 9))2>
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GAUSSIAN ERRORS - L2-LOSS /2

Easy to see: minimizing neg. log-likelihood with Gaussian errors is the
same as ERM with L2-loss:

—((0) = —log(L(6))
x —log (Hexp( (0 (x¢ |9))2>>
x L (1-i(010))

i=1
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GAUSSIAN ERRORS - L2-LOSS /3

@ We simulate data y | X ~ N (firue(X), 1) with firue = 0.2 - X
@ Let’s plot empirical errors as histogram, after fitting our model with L2-loss

@ Q-Q-plot compares empirical residuals vs. theoretical quantiles of Gaussian
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DISTRIBUTIONS AND LOSSES

@ For every error distribution IP. we can derive an equivalent loss X
function, which leads to the same point estimator for the parameter
vector 8 as maximume-likelihood. Formally, x
o 0 € argmaxy L(0) = 0 € argming — log(L(8))
@ But: The other way around does not always work: We cannot X X

derive a corresponding pdf or error distribution for every loss
function — the Hinge loss is one prominent example, for which
some probabilistic interpretation is still possible however, see

> Sollich 1999 X
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https://ieeexplore.ieee.org/abstract/document/819547

DISTRIBUTIONS AND LOSSES /2

When does the reverse direction hold?

@ If we can write the loss as L(y, f(x)) = L(y — f(x)) = L(r) for
r € R, then minimizing L(y — f(x)) is equivalent to maximizing a
conditional log-likelihood log(p(y — f(x|0)) if
o log(p(r)) is affine trafo of L (undoing the ):

log(p(r)) =a—bL(r), ac R,b>0

e pis a pdf (non-negative and integrates to one)

Thus, a loss L corresponds to MLE under some distribution if there
exist a € R, b > 0 such that

/ exp(a— bL(r))dr =1
R
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