
Introduction to Machine Learning

Advanced Risk Minimization
Maximum Likelihood Estimation vs.
Empirical Risk Minimization

Learning goals
Understand the connection between
maximum likelihood and risk
minimization

Learn the correspondence between a
Gaussian error distribution and the L2
loss



MAXIMUM LIKELIHOOD

Let’s consider regression from a maximum likelihood perspective.
Assume:

y | x ∼ p(y | x,θ)

Common case: true underlying relationship ftrue with additive noise:

y = ftrue(x) + ϵ
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ftrue(x) with Gaussian noise ~ N(0,1)

where ftrue has params θ and ϵ a RV that follows some distribution Pϵ,
with E[ϵ] = 0. Also, assume ϵ ⊥⊥ x.
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MAXIMUM LIKELIHOOD / 2

From a statistics / maximum-likelihood perspective, we assume (or we
pretend) we know the underlying distribution p(y | x,θ).

Then, given i.i.d data D =
((

x(1), y (1)
)
, . . . ,

(
x(n), y (n)

))
from Pxy

the maximum-likelihood principle is to maximize the likelihood

L(θ) =
n∏

i=1

p
(

y (i) | x(i),θ
)

or equivalently to minimize the negative log-likelihood

−ℓ(θ) = −
n∑

i=1

log p
(

y (i) | x(i),θ
)
.
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MAXIMUM LIKELIHOOD / 3

From an ML perspective we assume our hypothesis space corresponds
to the space of the (parameterized) ftrue.

Simply define neg. log-likelihood as loss function

L (y , f (x | θ)) := − log p(y | x,θ)

Then, maximum-likelihood = ERM

Remp(θ) =
n∑

i=1

L
(

y (i), f
(

x(i) | θ
))

NB: When we are only interested in the minimizer, we can ignore
multiplicative or additive constants.

We use ∝ as “proportional up to multiplicative and additive
constants”
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GAUSSIAN ERRORS - L2-LOSS

Assume y = ftrue(x) + ϵ with additive Gaussian errors, i.e.
ϵ(i) ∼ N (0, σ2). Then

y | x ∼ N
(
ftrue(x), σ2)

The likelihood is then

L(θ) =
n∏

i=1

p
(

y (i)
∣∣∣∣ f
(

x(i) | θ
)
, σ2
)

∝
n∏

i=1

exp

(
− 1

2σ2

(
y (i) − f

(
x(i) | θ

))2
)
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GAUSSIAN ERRORS - L2-LOSS / 2

Easy to see: minimizing neg. log-likelihood with Gaussian errors is the
same as ERM with L2-loss:

−ℓ(θ) = − log (L(θ))

∝ − log

(
n∏

i=1

exp

(
− 1

2σ2

(
y (i) − f

(
x(i) | θ

))2
))

∝
n∑

i=1

(
y (i) − f

(
x(i) | θ

))2
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GAUSSIAN ERRORS - L2-LOSS / 3

We simulate data y | x ∼ N (ftrue(x), 1) with ftrue = 0.2 · x

Let’s plot empirical errors as histogram, after fitting our model with L2-loss

Q-Q-plot compares empirical residuals vs. theoretical quantiles of Gaussian
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Residuals vs. Quantiles of Error Distribution
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DISTRIBUTIONS AND LOSSES

For every error distribution Pϵ we can derive an equivalent loss
function, which leads to the same point estimator for the parameter
vector θ as maximum-likelihood. Formally,

θ̂ ∈ argmaxθ L(θ) =⇒ θ̂ ∈ argminθ − log(L(θ))
But: The other way around does not always work: We cannot
derive a corresponding pdf or error distribution for every loss
function – the Hinge loss is one prominent example, for which
some probabilistic interpretation is still possible however, see

Sollich 1999 .
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https://ieeexplore.ieee.org/abstract/document/819547


DISTRIBUTIONS AND LOSSES / 2

When does the reverse direction hold?

If we can write the loss as L(y , f (x)) = L(y − f (x)) = L(r) for
r ∈ R, then minimizing L(y − f (x)) is equivalent to maximizing a
conditional log-likelihood log(p(y − f (x|θ)) if

log(p(r)) is affine trafo of L (undoing the ∝):

log(p(r)) = a − bL(r), a ∈ R, b > 0

p is a pdf (non-negative and integrates to one)

Thus, a loss L corresponds to MLE under some distribution if there
exist a ∈ R, b > 0 such that∫

R
exp(a − bL(r))dr = 1
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