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THE ROLE OF LOSS FUNCTIONS

Why should we care about the choice of the loss function L (y , f (x))?

Statistical properties: choice of loss implies statistical
assumptions about the distribution of y | x = x (see maximum
likelihood estimation vs. empirical risk minimization).

Robustness properties: some loss functions are more robust
towards outliers than others.

Numerical properties: the computational complexity of

argmin
θ∈Θ

Remp(θ)

is influenced by the choice of the loss function.
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SOME BASIC TERMINOLOGY

Classification losses are usually expressed in terms of the margin:
ν := y · f (x).
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SOME BASIC TERMINOLOGY

Regression losses often only depend on the residuals r := y − f (x).

Losses are called symmetric if L (y , f (x)) = L (f (x), y).

A loss is translation-invariant if L(y + a, f (x) + a) = L (y , f (x)), a ∈ R.

A loss is called distance-based if
it can be written in terms of the residual, i.e., L (y , f (x)) = ψ(r)
for some ψ : R→ R, and
ψ(r) = 0 ⇔ r = 0.

Distance-based: L1 Translation-invariant: L2 Symmetric: Brier score
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ROBUSTNESS
Outliers (in y ) have large residuals r = y − f (x). Some losses are more
affected by large residuals than others. If loss goes up superlinearly (e.g. L2) it
is not robust, linear (L1) or even sublinear losses are more robust.

y − f̂ (x) L1 L2 Huber (ϵ = 5)
1 1 1 0.5
5 5 25 12.5

10 10 100 37.5
50 50 2500 237.5

As a consequence, a model is less
influenced by outliers than by “in-
liers" if the loss is robust.
Outliers e.g. strongly influence L2.
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NUMERICAL PROPERTIES: SMOOTHNESS

Smoothness of a function is a property measured by the number of
continuous derivatives.

Derivative-based optimization requires smoothness of the risk Remp(θ)

If loss is unsmooth, we might have to use derivative-free
optimization (or worse, in case of 0-1)
Smoothness of Remp(θ) not only depends on L, but also requires
smoothness of f (x)!

Squared loss, exponential loss and squared
hinge loss are continuously differentiable.
Hinge loss is continuous but not differentiable.
0-1 loss is not even continuous.

© Introduction to Machine Learning – 5 / 9



NUMERICAL PROPERTIES: CONVEXITY

A function Remp(θ) is convex if

Remp

(
t · θ + (1 − t) · θ̃

)
≤ t · Remp (θ) + (1 − t) · Remp

(
θ̃
)

∀ t ∈ [0, 1], θ, θ̃ ∈ Θ
(strictly convex if the above holds with strict inequality).

In optimization, convex problems have a number of convenient
properties. E.g., all local minima are global.

→ strictly convex function has at most one global min
(uniqueness).

For Remp ∈ C2, Remp is convex iff Hessian ∇2Remp(θ) is psd.
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NUMERICAL PROPERTIES: CONVEXITY

Convexity of Remp(θ) depends both on convexity of L(·) (given in
most cases) and f (x | θ) (often problematic).

If we model our data using an exponential family distribution, we
always get convex losses

For f (x | θ) linear in θ, linear/logistic/softmax/poisson/. . .
regression are convex problems (all GLMs)!

Li et al., 2018: Visualizing the Loss
Landscape of Neural Nets. The problem on
the bottom right is convex, the others are
not (note that very high-dimensional
surfaces are coerced into 3D here).
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NUMERICAL PROPERTIES: CONVERGENCE
In case of complete separation, optimization might even fail entirely, e.g.:

Margin-based loss that is strictly monotonicly
decreasing in y · f , e.g., Bernoulli loss:

L (y , f (x)) = log (1 + exp (−yf (x)))

f linear in θ, e.g., logistic regression with f (x | θ) = θ⊤x

Data perfectly separable by our learner, so we can find θ:

y (i)f
(

x(i) | θ
)
= y (i)θT x(i) > 0 ∀x(i)

Can now a construct a strictly better θ

Remp(2 · θ) =
n∑

i=1

L
(

2y (i)θT x(i)
)
< Remp(θ)

As ||θ|| increases, sum strictly decreases, as argument of L is strictly larger

We can iterate that, so there is no local (or global) optimum, and no numerical
procedure can converge
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NUMERICAL PROPERTIES: CONVERGENCE / 2

Geometrically, this translates to an ever steeper slope of the
logistic/softmax function, i.e., increasingly sharp discrimination:

In practice, data are seldomly linearly separable and misclassified
examples act as counterweights to increasing parameter values.

Besides, we can use regularization to encourage convergence to robust
solutions.
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