
Introduction to Machine Learning

Advanced Risk Minimization
Logistic regression (Deep-Dive)

Learning goals
Derive the gradient of the logistic
regression

Derive the Hessian of the logistic
regression

Show that the logistic regression is a
convex problem



LOGISTIC REGRESSION: RISK PROBLEM

Given n ∈ N observations
(
x(i), y (i)

)
∈ X × Y with

X = Rd ,Y = {0, 1} we want to minimize the following risk

Remp = −
n∑

i=1

y (i) log
(
π
(

x(i) | θ
))

+
(

1 − y (i) log(1 − π
(

x(i) | θ
))

with respect to θ where the probabilistic classifier

π
(

x(i) | θ
)

= s
(

f
(

x(i) | θ
))

,

the sigmoid function s(f ) = 1
1+exp(−f ) and the score f

(
x(i) | θ

)
= θ⊤x.

NB: Note that ∂
∂f s(f ) = s(f )(1 − s(f )) and

∂f(x(i) | θ)
∂θ =

(
x(i)
)⊤

.
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LOGISTIC REGRESSION: GRADIENT

We find the gradient of logistic regression with the chain rule, s.t.,

∂

∂θ
Remp = −

n∑
i=1

∂

∂π
(
x(i) | θ

)y (i) log(π
(

x(i) | θ
)
)
∂π
(
x(i) | θ

)
∂θ

+

∂

∂π
(
x(i) | θ

) (1 − y (i)) log(1 − π
(

x(i) | θ
)
)
∂π
(
x(i) | θ

)
∂θ

= −
n∑

i=1

y (i)

π
(
x(i) | θ

) ∂π (x(i) | θ
)

∂θ
− 1 − y (i)

1 − π
(
x(i) | θ

) ∂π (x(i) | θ
)

∂θ

= −
n∑

i=1

(
y (i)

π
(
x(i) | θ

) − 1 − y (i)

1 − π
(
x(i) | θ

)) ∂s(f
(
x(i) | θ

)
)

∂f
(
x(i) | θ

) ∂f
(
x(i) | θ

)
∂θ

= −
n∑

i=1

(
y (i)(1 − π

(
x(i) | θ

)
)− (1 − y (i))π

(
x(i) | θ

))(
x(i)
)⊤

.
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LOGISTIC REGRESSION: GRADIENT / 2

=
n∑

i=1

(
π
(

x(i) | θ
)
− y (i)

)(
x(i)
)⊤

= (π(X| θ)− y)⊤ X

where X =
(
x(1), . . . , x(n)

)⊤ ∈ Rn×d , y =
(
y (1), . . . , y (n)

)⊤
,

π(X| θ) =
(
π
(
x(1) | θ

)
, . . . , π

(
x(n) | θ

))⊤ ∈ Rn.

=⇒ The gradient ∇θRemp =
(

∂
∂θRemp

)⊤
= X⊤ (π(X| θ)− y)

This formula can now be used in gradient descent and its friends.
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LOGISTIC REGRESSION: HESSIAN

We find the Hessian via differentiation, s.t.,

∇2
θRemp =

∂2

∂θ⊤∂θ
Remp =

∂

∂θ⊤

n∑
i=1

(
π
(

x(i) | θ
)
− y (i)

)(
x(i)
)⊤

=
n∑

i=1

x(i)
(
π
(

x(i) | θ
)(

1 − π
(

x(i) | θ
)))(

x(i)
)⊤

= X⊤DX

where D ∈ Rn×n is a diagonal matrix with diagonal(
π
(

x(1) | θ
)
(1 − π

(
x(1) | θ

)
, . . . , π

(
x(n) | θ

)
(1 − π

(
x(n) | θ

))
.

Can now be used in Newton-Raphson and other 2nd order optimizers.
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LOGISTIC REGRESSION: CONVEXITY

Finally, we check that logistic regression is a convex problem:

We define the diagonal matrix D̄ ∈ Rn×n with diagonal(√
π
(
x(1) | θ

)
)(1 − π

(
x(1) | θ

)
, . . . ,

√
π
(
x(n) | θ

)
(1 − π

(
x(n) | θ

))
which is possible since π maps into (0, 1).

With this, we get for any w ∈ Rd that

w⊤∇2
θRempw = w⊤X⊤D̄⊤D̄Xw = (D̄Xw)⊤D̄Xw = ∥D̄Xw∥2

2 ≥ 0

since obviously D = D̄⊤D̄.

⇒ ∇2
θRemp is positive semi-definite ⇒ Remp is convex.
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