
Introduction to Machine Learning

Advanced Risk Minimization
Advanced Classification Losses

Learning goals
Know the (squared) hinge loss

Know the L2 loss defined on scores

Know the exponential loss

Know the AUC loss



HINGE LOSS

The intuitive appeal of the 0-1-loss is set off by its analytical
properties ill-suited to direct optimization.

The hinge loss is a continuous relaxation that acts as a convex
upper bound on the 0-1-loss (for y ∈ {−1,+1}):

L (y , f ) = max{0, 1 − yf}.

Note that the hinge loss only equals zero for a margin ≥ 1,
encouraging confident (correct) predictions.

It resembles a door hinge, hence the name:
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SQUARED HINGE LOSS

We can also specify a squared version for the hinge loss:

L (y , f ) = max{0, (1 − yf )}2.

The L2 form punishes margins yf ∈ (0, 1) less severely but puts a
high penalty on more confidently wrong predictions.

Therefore, it is smoother yet more outlier-sensitive than the
non-squared hinge loss.
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SQUARED LOSS ON SCORES

Analogous to the Brier score defined on probabilities we can
specify a squared loss on classification scores (again,
y ∈ {−1,+1}, using that y2 ≡ 1):

L (y , f ) = (y − f )2 = y2 − 2yf + f 2 =

= 1 − 2yf + (yf )2 = (1 − yf )2

This loss behaves just like the squared hinge loss for yf < 1, but is
zero only for yf = 1 and actually increases again for larger
margins (which is in general not desirable!)
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CLASSIFICATION LOSSES: EXPONENTIAL LOSS

Another smooth approximation to the 0-1-loss is the exponential loss:

L (y , f ) = exp(−yf ), used in AdaBoost.

Convex, differentiable (thus easier to optimize than 0-1-loss).

Loss increases exponentially for wrong predictions with high
confidence; if prediction is correct but with low confidence only, the
loss is still positive.

No closed-form analytic solution to (empirical) risk minimization.
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CLASSIFICATION LOSSES: AUC-LOSS

Often AUC is used as an evaluation criterion for binary classifiers.

Let y ∈ {−1,+1} with n− negative and n+ positive samples.

The AUC can then be defined as

AUC =
1

n+

1
n−

∑
i:y(i)=1

∑
j:y(j)=−1

[f (i) > f (j)]

This is not differentiable w.r.t f due to indicator [f (i) > f (j)].

The indicator function can be approximated by the distribution
function of the triangular distribution on [−1, 1] with mean 0.

However, direct optimization of the AUC is numerically difficult and
might not work as well as using a common loss and tuning for AUC
in practice.
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