Introduction to Machine Learning

Advanced Risk Minimization
Optimal constant model for the empirical
log loss risk (Deep-Dive)

. Learning goals

@ Derive the optimal constant model for
the binary empirical log loss risk
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2 @ Derive the optimal constant model for
R the empirical multiclass log loss risk
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BINARY LOG LOSS: EMP. RISK MINIMIZER

Given n € N observations y("), ... | y(") ¢ Y = {0,1} we want to
determine the optimal constant model for the empirical log loss risk.

argminRemp = argmin —» ¥ log(6) + (1 — y1V) log(1 - ).
0€(0,1) 0e(0,1)
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BINARY LOG LOSS: EMP. RISK MINIMIZER /2

The minimizer can be found by setting the derivative to zero, i.e.,

d n y(’) 1— y(’) |
agem = 25 g O
n ; |
— => Y —0)—0(1-yD) =0
i=1
n ‘ ‘
— -> (y(’) 9) =0
i=1
1
= 0= - y( €  (0,1) v/ (assuming both labels occur).
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MULTICLASS LOG LOSS: EMP. RISK MINIMIZER

Given n € N observations y("), ... | y(" ¢ Yy = {1,..., g} with
g € N1 we want to determine the optimal constant model 6 € (0, 1)9

for the empirical log loss risk

n

g9
argmin Remp = argmin — 1 ,0)—p log(6))
6<(0,1)9 6c(01) T ”z; b=

s.t. Z 0/' =1.
=1

We can solve this constrained optimization problem by plugging the
constraint into the risk (we could also use Lagrange multipliers), i.e., we
replace 6 (this is an arbitrary choice) such that g = 1 — Z]‘-’; 0
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MULTICLASS LOG LOSS: EMP. RISK MINIMIZER /2

With this, we find the equivalent optimization problem

n g—1
argmin Remp = argmin — 1,0 log(6))
0€(0,1)9~" 0c(0,1)9-1 2121 b=

g—1
Hly0—gy log (1 - Z,-:1 01')
—1
s.t. ng:1 0/' < 1.

Forj e {1,...,9 — 1}, the j-th partial derivative of our objective

0 1
a6, e = Zﬂ{y =iy~ Lo=e) ety Z
_ _ﬂ Ng
7 " Og
where ni with k € {1,..., g} is the number of label k in y and we

assume that n, > 0.
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MULTICLASS LOG LOSS: EMP. RISK MINIMIZER /3

For the minimizer, it must hold for j € {1,...,g — 1} that
0 !
:>Z —nfg+ngbj) = O
— —(n_ng)eg+ng(1—eg) =0
&= —nby + ny = 0
A~ N
:eg:f €(0,1) v
~ Ognp
=vje{l,...,.g-1}: f="21="1 € (0,1) v
Ng n

g—1 4 N ng
<:Z,:1 9,:1—9921—?<1\/)
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CONVEXITY

Finally, we check that we indeed found a minimizer by showing that
Remp is convex for the multiclass case (binary is a special case of this):

The Hessian of Remp

g—% 0 0
0
ViRemp = .
0 0 =t
92

is positive definite since all its eigenvalues

_ N

N= 2
]

>0 Vje{l,...,g—1}.

From this, it follows that Remp is (strictly) convex.
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