
Introduction to Machine Learning

Advanced Risk Minimization
Brier Score

Learning goals
Know the Brier score

Derive the risk minimizer

Derive the optimal constant model



BRIER SCORE

The binary Brier score is defined on probabilities π ∈ [0, 1] and
0-1-encoded labels y ∈ {0, 1} and measures their squared distance
(L2 loss on probabilities).

L (y , π) = (π − y)2

As the Brier score is a proper scoring rule, it can be used for calibration.
Note that is is not convex on probabilities anymore.
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BRIER SCORE: RISK MINIMIZER

The risk minimizer for the (binary) Brier score is

π∗(x) = η(x) = P(y | x = x),

which means that the Brier score attains its minimum if the prediction
equals the “true” probability of the outcome.

The risk minimizer for the multiclass Brier score is

π∗(x) = P(y = k | x = x).

Proof: We only show the proof for the binary case. We need to
minimize

Ex [L(1, π(x)) · η(x) + L(0, π(x)) · (1 − η(x))] ,
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BRIER SCORE: RISK MINIMIZER / 2

which we do point-wise for every x. We plug in the Brier score

argmin
c

L(1, c)η(x) + L(0, c)(1 − η(x))

= argmin
c

(c − 1)2η(x) + c2(1 − η(x)) |+η(x)2 − η(x)2

= argmin
c

(c2 − 2cη(x) + η(x)2)− η(x)2 + η(x)

= argmin
c

(c − η(x))2.

The expression is minimal if c = η(x) = P(y = 1 | x = x).
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BRIER SCORE: OPTIMAL CONSTANT MODEL

The optimal constant probability model π(x) = θ w.r.t. the Brier score
for labels from Y = {0, 1} is:

min
θ

Remp(θ) = min
θ

n∑
i=1

(
y (i) − θ

)2

⇔ ∂Remp(θ)

∂θ
= −2 ·

n∑
i=1

(y (i) − θ) = 0

θ̂ =
1
n

n∑
i=1

y (i).

This is the fraction of class-1 observations in the observed data.
(This also directly follows from our L2 proof for regression).

Similarly, for the multiclass brier score the optimal constant is

θ̂k = 1
n

n∑
i=1

[y = k ].
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